↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
reach_in_gggg(X, Y, Edges, Visited) → U1_gggg(X, Y, Edges, Visited, member_in_gg(.(X, .(Y, [])), Edges))
member_in_gg(H, .(H, L)) → member_out_gg(H, .(H, L))
member_in_gg(X, .(H, L)) → U5_gg(X, H, L, member_in_gg(X, L))
U5_gg(X, H, L, member_out_gg(X, L)) → member_out_gg(X, .(H, L))
U1_gggg(X, Y, Edges, Visited, member_out_gg(.(X, .(Y, [])), Edges)) → reach_out_gggg(X, Y, Edges, Visited)
reach_in_gggg(X, Z, Edges, Visited) → U2_gggg(X, Z, Edges, Visited, member1_in_gg(.(X, .(Y, [])), Edges))
member1_in_gg(H, .(H, L)) → member1_out_gg(H, .(H, L))
member1_in_gg(X, .(H, L)) → U6_gg(X, H, L, member1_in_gg(X, L))
U6_gg(X, H, L, member1_out_gg(X, L)) → member1_out_gg(X, .(H, L))
U2_gggg(X, Z, Edges, Visited, member1_out_gg(.(X, .(Y, [])), Edges)) → U3_gggg(X, Z, Edges, Visited, Y, member_in_ag(Y, Visited))
member_in_ag(H, .(H, L)) → member_out_ag(H, .(H, L))
member_in_ag(X, .(H, L)) → U5_ag(X, H, L, member_in_ag(X, L))
U5_ag(X, H, L, member_out_ag(X, L)) → member_out_ag(X, .(H, L))
U3_gggg(X, Z, Edges, Visited, Y, member_out_ag(Y, Visited)) → U4_gggg(X, Z, Edges, Visited, reach_in_aggg(Y, Z, Edges, .(Y, Visited)))
reach_in_aggg(X, Y, Edges, Visited) → U1_aggg(X, Y, Edges, Visited, member_in_gg(.(X, .(Y, [])), Edges))
U1_aggg(X, Y, Edges, Visited, member_out_gg(.(X, .(Y, [])), Edges)) → reach_out_aggg(X, Y, Edges, Visited)
reach_in_aggg(X, Z, Edges, Visited) → U2_aggg(X, Z, Edges, Visited, member1_in_gg(.(X, .(Y, [])), Edges))
U2_aggg(X, Z, Edges, Visited, member1_out_gg(.(X, .(Y, [])), Edges)) → U3_aggg(X, Z, Edges, Visited, Y, member_in_ag(Y, Visited))
U3_aggg(X, Z, Edges, Visited, Y, member_out_ag(Y, Visited)) → U4_aggg(X, Z, Edges, Visited, reach_in_aggg(Y, Z, Edges, .(Y, Visited)))
U4_aggg(X, Z, Edges, Visited, reach_out_aggg(Y, Z, Edges, .(Y, Visited))) → reach_out_aggg(X, Z, Edges, Visited)
U4_gggg(X, Z, Edges, Visited, reach_out_aggg(Y, Z, Edges, .(Y, Visited))) → reach_out_gggg(X, Z, Edges, Visited)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PrologToPiTRSProof
reach_in_gggg(X, Y, Edges, Visited) → U1_gggg(X, Y, Edges, Visited, member_in_gg(.(X, .(Y, [])), Edges))
member_in_gg(H, .(H, L)) → member_out_gg(H, .(H, L))
member_in_gg(X, .(H, L)) → U5_gg(X, H, L, member_in_gg(X, L))
U5_gg(X, H, L, member_out_gg(X, L)) → member_out_gg(X, .(H, L))
U1_gggg(X, Y, Edges, Visited, member_out_gg(.(X, .(Y, [])), Edges)) → reach_out_gggg(X, Y, Edges, Visited)
reach_in_gggg(X, Z, Edges, Visited) → U2_gggg(X, Z, Edges, Visited, member1_in_gg(.(X, .(Y, [])), Edges))
member1_in_gg(H, .(H, L)) → member1_out_gg(H, .(H, L))
member1_in_gg(X, .(H, L)) → U6_gg(X, H, L, member1_in_gg(X, L))
U6_gg(X, H, L, member1_out_gg(X, L)) → member1_out_gg(X, .(H, L))
U2_gggg(X, Z, Edges, Visited, member1_out_gg(.(X, .(Y, [])), Edges)) → U3_gggg(X, Z, Edges, Visited, Y, member_in_ag(Y, Visited))
member_in_ag(H, .(H, L)) → member_out_ag(H, .(H, L))
member_in_ag(X, .(H, L)) → U5_ag(X, H, L, member_in_ag(X, L))
U5_ag(X, H, L, member_out_ag(X, L)) → member_out_ag(X, .(H, L))
U3_gggg(X, Z, Edges, Visited, Y, member_out_ag(Y, Visited)) → U4_gggg(X, Z, Edges, Visited, reach_in_aggg(Y, Z, Edges, .(Y, Visited)))
reach_in_aggg(X, Y, Edges, Visited) → U1_aggg(X, Y, Edges, Visited, member_in_gg(.(X, .(Y, [])), Edges))
U1_aggg(X, Y, Edges, Visited, member_out_gg(.(X, .(Y, [])), Edges)) → reach_out_aggg(X, Y, Edges, Visited)
reach_in_aggg(X, Z, Edges, Visited) → U2_aggg(X, Z, Edges, Visited, member1_in_gg(.(X, .(Y, [])), Edges))
U2_aggg(X, Z, Edges, Visited, member1_out_gg(.(X, .(Y, [])), Edges)) → U3_aggg(X, Z, Edges, Visited, Y, member_in_ag(Y, Visited))
U3_aggg(X, Z, Edges, Visited, Y, member_out_ag(Y, Visited)) → U4_aggg(X, Z, Edges, Visited, reach_in_aggg(Y, Z, Edges, .(Y, Visited)))
U4_aggg(X, Z, Edges, Visited, reach_out_aggg(Y, Z, Edges, .(Y, Visited))) → reach_out_aggg(X, Z, Edges, Visited)
U4_gggg(X, Z, Edges, Visited, reach_out_aggg(Y, Z, Edges, .(Y, Visited))) → reach_out_gggg(X, Z, Edges, Visited)
REACH_IN_GGGG(X, Y, Edges, Visited) → U1_GGGG(X, Y, Edges, Visited, member_in_gg(.(X, .(Y, [])), Edges))
REACH_IN_GGGG(X, Y, Edges, Visited) → MEMBER_IN_GG(.(X, .(Y, [])), Edges)
MEMBER_IN_GG(X, .(H, L)) → U5_GG(X, H, L, member_in_gg(X, L))
MEMBER_IN_GG(X, .(H, L)) → MEMBER_IN_GG(X, L)
REACH_IN_GGGG(X, Z, Edges, Visited) → U2_GGGG(X, Z, Edges, Visited, member1_in_gg(.(X, .(Y, [])), Edges))
REACH_IN_GGGG(X, Z, Edges, Visited) → MEMBER1_IN_GG(.(X, .(Y, [])), Edges)
MEMBER1_IN_GG(X, .(H, L)) → U6_GG(X, H, L, member1_in_gg(X, L))
MEMBER1_IN_GG(X, .(H, L)) → MEMBER1_IN_GG(X, L)
U2_GGGG(X, Z, Edges, Visited, member1_out_gg(.(X, .(Y, [])), Edges)) → U3_GGGG(X, Z, Edges, Visited, Y, member_in_ag(Y, Visited))
U2_GGGG(X, Z, Edges, Visited, member1_out_gg(.(X, .(Y, [])), Edges)) → MEMBER_IN_AG(Y, Visited)
MEMBER_IN_AG(X, .(H, L)) → U5_AG(X, H, L, member_in_ag(X, L))
MEMBER_IN_AG(X, .(H, L)) → MEMBER_IN_AG(X, L)
U3_GGGG(X, Z, Edges, Visited, Y, member_out_ag(Y, Visited)) → U4_GGGG(X, Z, Edges, Visited, reach_in_aggg(Y, Z, Edges, .(Y, Visited)))
U3_GGGG(X, Z, Edges, Visited, Y, member_out_ag(Y, Visited)) → REACH_IN_AGGG(Y, Z, Edges, .(Y, Visited))
REACH_IN_AGGG(X, Y, Edges, Visited) → U1_AGGG(X, Y, Edges, Visited, member_in_gg(.(X, .(Y, [])), Edges))
REACH_IN_AGGG(X, Y, Edges, Visited) → MEMBER_IN_GG(.(X, .(Y, [])), Edges)
REACH_IN_AGGG(X, Z, Edges, Visited) → U2_AGGG(X, Z, Edges, Visited, member1_in_gg(.(X, .(Y, [])), Edges))
REACH_IN_AGGG(X, Z, Edges, Visited) → MEMBER1_IN_GG(.(X, .(Y, [])), Edges)
U2_AGGG(X, Z, Edges, Visited, member1_out_gg(.(X, .(Y, [])), Edges)) → U3_AGGG(X, Z, Edges, Visited, Y, member_in_ag(Y, Visited))
U2_AGGG(X, Z, Edges, Visited, member1_out_gg(.(X, .(Y, [])), Edges)) → MEMBER_IN_AG(Y, Visited)
U3_AGGG(X, Z, Edges, Visited, Y, member_out_ag(Y, Visited)) → U4_AGGG(X, Z, Edges, Visited, reach_in_aggg(Y, Z, Edges, .(Y, Visited)))
U3_AGGG(X, Z, Edges, Visited, Y, member_out_ag(Y, Visited)) → REACH_IN_AGGG(Y, Z, Edges, .(Y, Visited))
reach_in_gggg(X, Y, Edges, Visited) → U1_gggg(X, Y, Edges, Visited, member_in_gg(.(X, .(Y, [])), Edges))
member_in_gg(H, .(H, L)) → member_out_gg(H, .(H, L))
member_in_gg(X, .(H, L)) → U5_gg(X, H, L, member_in_gg(X, L))
U5_gg(X, H, L, member_out_gg(X, L)) → member_out_gg(X, .(H, L))
U1_gggg(X, Y, Edges, Visited, member_out_gg(.(X, .(Y, [])), Edges)) → reach_out_gggg(X, Y, Edges, Visited)
reach_in_gggg(X, Z, Edges, Visited) → U2_gggg(X, Z, Edges, Visited, member1_in_gg(.(X, .(Y, [])), Edges))
member1_in_gg(H, .(H, L)) → member1_out_gg(H, .(H, L))
member1_in_gg(X, .(H, L)) → U6_gg(X, H, L, member1_in_gg(X, L))
U6_gg(X, H, L, member1_out_gg(X, L)) → member1_out_gg(X, .(H, L))
U2_gggg(X, Z, Edges, Visited, member1_out_gg(.(X, .(Y, [])), Edges)) → U3_gggg(X, Z, Edges, Visited, Y, member_in_ag(Y, Visited))
member_in_ag(H, .(H, L)) → member_out_ag(H, .(H, L))
member_in_ag(X, .(H, L)) → U5_ag(X, H, L, member_in_ag(X, L))
U5_ag(X, H, L, member_out_ag(X, L)) → member_out_ag(X, .(H, L))
U3_gggg(X, Z, Edges, Visited, Y, member_out_ag(Y, Visited)) → U4_gggg(X, Z, Edges, Visited, reach_in_aggg(Y, Z, Edges, .(Y, Visited)))
reach_in_aggg(X, Y, Edges, Visited) → U1_aggg(X, Y, Edges, Visited, member_in_gg(.(X, .(Y, [])), Edges))
U1_aggg(X, Y, Edges, Visited, member_out_gg(.(X, .(Y, [])), Edges)) → reach_out_aggg(X, Y, Edges, Visited)
reach_in_aggg(X, Z, Edges, Visited) → U2_aggg(X, Z, Edges, Visited, member1_in_gg(.(X, .(Y, [])), Edges))
U2_aggg(X, Z, Edges, Visited, member1_out_gg(.(X, .(Y, [])), Edges)) → U3_aggg(X, Z, Edges, Visited, Y, member_in_ag(Y, Visited))
U3_aggg(X, Z, Edges, Visited, Y, member_out_ag(Y, Visited)) → U4_aggg(X, Z, Edges, Visited, reach_in_aggg(Y, Z, Edges, .(Y, Visited)))
U4_aggg(X, Z, Edges, Visited, reach_out_aggg(Y, Z, Edges, .(Y, Visited))) → reach_out_aggg(X, Z, Edges, Visited)
U4_gggg(X, Z, Edges, Visited, reach_out_aggg(Y, Z, Edges, .(Y, Visited))) → reach_out_gggg(X, Z, Edges, Visited)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PrologToPiTRSProof
REACH_IN_GGGG(X, Y, Edges, Visited) → U1_GGGG(X, Y, Edges, Visited, member_in_gg(.(X, .(Y, [])), Edges))
REACH_IN_GGGG(X, Y, Edges, Visited) → MEMBER_IN_GG(.(X, .(Y, [])), Edges)
MEMBER_IN_GG(X, .(H, L)) → U5_GG(X, H, L, member_in_gg(X, L))
MEMBER_IN_GG(X, .(H, L)) → MEMBER_IN_GG(X, L)
REACH_IN_GGGG(X, Z, Edges, Visited) → U2_GGGG(X, Z, Edges, Visited, member1_in_gg(.(X, .(Y, [])), Edges))
REACH_IN_GGGG(X, Z, Edges, Visited) → MEMBER1_IN_GG(.(X, .(Y, [])), Edges)
MEMBER1_IN_GG(X, .(H, L)) → U6_GG(X, H, L, member1_in_gg(X, L))
MEMBER1_IN_GG(X, .(H, L)) → MEMBER1_IN_GG(X, L)
U2_GGGG(X, Z, Edges, Visited, member1_out_gg(.(X, .(Y, [])), Edges)) → U3_GGGG(X, Z, Edges, Visited, Y, member_in_ag(Y, Visited))
U2_GGGG(X, Z, Edges, Visited, member1_out_gg(.(X, .(Y, [])), Edges)) → MEMBER_IN_AG(Y, Visited)
MEMBER_IN_AG(X, .(H, L)) → U5_AG(X, H, L, member_in_ag(X, L))
MEMBER_IN_AG(X, .(H, L)) → MEMBER_IN_AG(X, L)
U3_GGGG(X, Z, Edges, Visited, Y, member_out_ag(Y, Visited)) → U4_GGGG(X, Z, Edges, Visited, reach_in_aggg(Y, Z, Edges, .(Y, Visited)))
U3_GGGG(X, Z, Edges, Visited, Y, member_out_ag(Y, Visited)) → REACH_IN_AGGG(Y, Z, Edges, .(Y, Visited))
REACH_IN_AGGG(X, Y, Edges, Visited) → U1_AGGG(X, Y, Edges, Visited, member_in_gg(.(X, .(Y, [])), Edges))
REACH_IN_AGGG(X, Y, Edges, Visited) → MEMBER_IN_GG(.(X, .(Y, [])), Edges)
REACH_IN_AGGG(X, Z, Edges, Visited) → U2_AGGG(X, Z, Edges, Visited, member1_in_gg(.(X, .(Y, [])), Edges))
REACH_IN_AGGG(X, Z, Edges, Visited) → MEMBER1_IN_GG(.(X, .(Y, [])), Edges)
U2_AGGG(X, Z, Edges, Visited, member1_out_gg(.(X, .(Y, [])), Edges)) → U3_AGGG(X, Z, Edges, Visited, Y, member_in_ag(Y, Visited))
U2_AGGG(X, Z, Edges, Visited, member1_out_gg(.(X, .(Y, [])), Edges)) → MEMBER_IN_AG(Y, Visited)
U3_AGGG(X, Z, Edges, Visited, Y, member_out_ag(Y, Visited)) → U4_AGGG(X, Z, Edges, Visited, reach_in_aggg(Y, Z, Edges, .(Y, Visited)))
U3_AGGG(X, Z, Edges, Visited, Y, member_out_ag(Y, Visited)) → REACH_IN_AGGG(Y, Z, Edges, .(Y, Visited))
reach_in_gggg(X, Y, Edges, Visited) → U1_gggg(X, Y, Edges, Visited, member_in_gg(.(X, .(Y, [])), Edges))
member_in_gg(H, .(H, L)) → member_out_gg(H, .(H, L))
member_in_gg(X, .(H, L)) → U5_gg(X, H, L, member_in_gg(X, L))
U5_gg(X, H, L, member_out_gg(X, L)) → member_out_gg(X, .(H, L))
U1_gggg(X, Y, Edges, Visited, member_out_gg(.(X, .(Y, [])), Edges)) → reach_out_gggg(X, Y, Edges, Visited)
reach_in_gggg(X, Z, Edges, Visited) → U2_gggg(X, Z, Edges, Visited, member1_in_gg(.(X, .(Y, [])), Edges))
member1_in_gg(H, .(H, L)) → member1_out_gg(H, .(H, L))
member1_in_gg(X, .(H, L)) → U6_gg(X, H, L, member1_in_gg(X, L))
U6_gg(X, H, L, member1_out_gg(X, L)) → member1_out_gg(X, .(H, L))
U2_gggg(X, Z, Edges, Visited, member1_out_gg(.(X, .(Y, [])), Edges)) → U3_gggg(X, Z, Edges, Visited, Y, member_in_ag(Y, Visited))
member_in_ag(H, .(H, L)) → member_out_ag(H, .(H, L))
member_in_ag(X, .(H, L)) → U5_ag(X, H, L, member_in_ag(X, L))
U5_ag(X, H, L, member_out_ag(X, L)) → member_out_ag(X, .(H, L))
U3_gggg(X, Z, Edges, Visited, Y, member_out_ag(Y, Visited)) → U4_gggg(X, Z, Edges, Visited, reach_in_aggg(Y, Z, Edges, .(Y, Visited)))
reach_in_aggg(X, Y, Edges, Visited) → U1_aggg(X, Y, Edges, Visited, member_in_gg(.(X, .(Y, [])), Edges))
U1_aggg(X, Y, Edges, Visited, member_out_gg(.(X, .(Y, [])), Edges)) → reach_out_aggg(X, Y, Edges, Visited)
reach_in_aggg(X, Z, Edges, Visited) → U2_aggg(X, Z, Edges, Visited, member1_in_gg(.(X, .(Y, [])), Edges))
U2_aggg(X, Z, Edges, Visited, member1_out_gg(.(X, .(Y, [])), Edges)) → U3_aggg(X, Z, Edges, Visited, Y, member_in_ag(Y, Visited))
U3_aggg(X, Z, Edges, Visited, Y, member_out_ag(Y, Visited)) → U4_aggg(X, Z, Edges, Visited, reach_in_aggg(Y, Z, Edges, .(Y, Visited)))
U4_aggg(X, Z, Edges, Visited, reach_out_aggg(Y, Z, Edges, .(Y, Visited))) → reach_out_aggg(X, Z, Edges, Visited)
U4_gggg(X, Z, Edges, Visited, reach_out_aggg(Y, Z, Edges, .(Y, Visited))) → reach_out_gggg(X, Z, Edges, Visited)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDP
↳ PiDP
↳ PrologToPiTRSProof
MEMBER_IN_AG(X, .(H, L)) → MEMBER_IN_AG(X, L)
reach_in_gggg(X, Y, Edges, Visited) → U1_gggg(X, Y, Edges, Visited, member_in_gg(.(X, .(Y, [])), Edges))
member_in_gg(H, .(H, L)) → member_out_gg(H, .(H, L))
member_in_gg(X, .(H, L)) → U5_gg(X, H, L, member_in_gg(X, L))
U5_gg(X, H, L, member_out_gg(X, L)) → member_out_gg(X, .(H, L))
U1_gggg(X, Y, Edges, Visited, member_out_gg(.(X, .(Y, [])), Edges)) → reach_out_gggg(X, Y, Edges, Visited)
reach_in_gggg(X, Z, Edges, Visited) → U2_gggg(X, Z, Edges, Visited, member1_in_gg(.(X, .(Y, [])), Edges))
member1_in_gg(H, .(H, L)) → member1_out_gg(H, .(H, L))
member1_in_gg(X, .(H, L)) → U6_gg(X, H, L, member1_in_gg(X, L))
U6_gg(X, H, L, member1_out_gg(X, L)) → member1_out_gg(X, .(H, L))
U2_gggg(X, Z, Edges, Visited, member1_out_gg(.(X, .(Y, [])), Edges)) → U3_gggg(X, Z, Edges, Visited, Y, member_in_ag(Y, Visited))
member_in_ag(H, .(H, L)) → member_out_ag(H, .(H, L))
member_in_ag(X, .(H, L)) → U5_ag(X, H, L, member_in_ag(X, L))
U5_ag(X, H, L, member_out_ag(X, L)) → member_out_ag(X, .(H, L))
U3_gggg(X, Z, Edges, Visited, Y, member_out_ag(Y, Visited)) → U4_gggg(X, Z, Edges, Visited, reach_in_aggg(Y, Z, Edges, .(Y, Visited)))
reach_in_aggg(X, Y, Edges, Visited) → U1_aggg(X, Y, Edges, Visited, member_in_gg(.(X, .(Y, [])), Edges))
U1_aggg(X, Y, Edges, Visited, member_out_gg(.(X, .(Y, [])), Edges)) → reach_out_aggg(X, Y, Edges, Visited)
reach_in_aggg(X, Z, Edges, Visited) → U2_aggg(X, Z, Edges, Visited, member1_in_gg(.(X, .(Y, [])), Edges))
U2_aggg(X, Z, Edges, Visited, member1_out_gg(.(X, .(Y, [])), Edges)) → U3_aggg(X, Z, Edges, Visited, Y, member_in_ag(Y, Visited))
U3_aggg(X, Z, Edges, Visited, Y, member_out_ag(Y, Visited)) → U4_aggg(X, Z, Edges, Visited, reach_in_aggg(Y, Z, Edges, .(Y, Visited)))
U4_aggg(X, Z, Edges, Visited, reach_out_aggg(Y, Z, Edges, .(Y, Visited))) → reach_out_aggg(X, Z, Edges, Visited)
U4_gggg(X, Z, Edges, Visited, reach_out_aggg(Y, Z, Edges, .(Y, Visited))) → reach_out_gggg(X, Z, Edges, Visited)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
↳ PiDP
↳ PiDP
↳ PrologToPiTRSProof
MEMBER_IN_AG(X, .(H, L)) → MEMBER_IN_AG(X, L)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PiDP
↳ PiDP
↳ PiDP
↳ PrologToPiTRSProof
MEMBER_IN_AG(.(L)) → MEMBER_IN_AG(L)
From the DPs we obtained the following set of size-change graphs:
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDP
↳ PrologToPiTRSProof
MEMBER1_IN_GG(X, .(H, L)) → MEMBER1_IN_GG(X, L)
reach_in_gggg(X, Y, Edges, Visited) → U1_gggg(X, Y, Edges, Visited, member_in_gg(.(X, .(Y, [])), Edges))
member_in_gg(H, .(H, L)) → member_out_gg(H, .(H, L))
member_in_gg(X, .(H, L)) → U5_gg(X, H, L, member_in_gg(X, L))
U5_gg(X, H, L, member_out_gg(X, L)) → member_out_gg(X, .(H, L))
U1_gggg(X, Y, Edges, Visited, member_out_gg(.(X, .(Y, [])), Edges)) → reach_out_gggg(X, Y, Edges, Visited)
reach_in_gggg(X, Z, Edges, Visited) → U2_gggg(X, Z, Edges, Visited, member1_in_gg(.(X, .(Y, [])), Edges))
member1_in_gg(H, .(H, L)) → member1_out_gg(H, .(H, L))
member1_in_gg(X, .(H, L)) → U6_gg(X, H, L, member1_in_gg(X, L))
U6_gg(X, H, L, member1_out_gg(X, L)) → member1_out_gg(X, .(H, L))
U2_gggg(X, Z, Edges, Visited, member1_out_gg(.(X, .(Y, [])), Edges)) → U3_gggg(X, Z, Edges, Visited, Y, member_in_ag(Y, Visited))
member_in_ag(H, .(H, L)) → member_out_ag(H, .(H, L))
member_in_ag(X, .(H, L)) → U5_ag(X, H, L, member_in_ag(X, L))
U5_ag(X, H, L, member_out_ag(X, L)) → member_out_ag(X, .(H, L))
U3_gggg(X, Z, Edges, Visited, Y, member_out_ag(Y, Visited)) → U4_gggg(X, Z, Edges, Visited, reach_in_aggg(Y, Z, Edges, .(Y, Visited)))
reach_in_aggg(X, Y, Edges, Visited) → U1_aggg(X, Y, Edges, Visited, member_in_gg(.(X, .(Y, [])), Edges))
U1_aggg(X, Y, Edges, Visited, member_out_gg(.(X, .(Y, [])), Edges)) → reach_out_aggg(X, Y, Edges, Visited)
reach_in_aggg(X, Z, Edges, Visited) → U2_aggg(X, Z, Edges, Visited, member1_in_gg(.(X, .(Y, [])), Edges))
U2_aggg(X, Z, Edges, Visited, member1_out_gg(.(X, .(Y, [])), Edges)) → U3_aggg(X, Z, Edges, Visited, Y, member_in_ag(Y, Visited))
U3_aggg(X, Z, Edges, Visited, Y, member_out_ag(Y, Visited)) → U4_aggg(X, Z, Edges, Visited, reach_in_aggg(Y, Z, Edges, .(Y, Visited)))
U4_aggg(X, Z, Edges, Visited, reach_out_aggg(Y, Z, Edges, .(Y, Visited))) → reach_out_aggg(X, Z, Edges, Visited)
U4_gggg(X, Z, Edges, Visited, reach_out_aggg(Y, Z, Edges, .(Y, Visited))) → reach_out_gggg(X, Z, Edges, Visited)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
↳ PiDP
↳ PrologToPiTRSProof
MEMBER1_IN_GG(X, .(H, L)) → MEMBER1_IN_GG(X, L)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PiDP
↳ PiDP
↳ PrologToPiTRSProof
MEMBER1_IN_GG(X, .(L)) → MEMBER1_IN_GG(X, L)
From the DPs we obtained the following set of size-change graphs:
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PrologToPiTRSProof
MEMBER_IN_GG(X, .(H, L)) → MEMBER_IN_GG(X, L)
reach_in_gggg(X, Y, Edges, Visited) → U1_gggg(X, Y, Edges, Visited, member_in_gg(.(X, .(Y, [])), Edges))
member_in_gg(H, .(H, L)) → member_out_gg(H, .(H, L))
member_in_gg(X, .(H, L)) → U5_gg(X, H, L, member_in_gg(X, L))
U5_gg(X, H, L, member_out_gg(X, L)) → member_out_gg(X, .(H, L))
U1_gggg(X, Y, Edges, Visited, member_out_gg(.(X, .(Y, [])), Edges)) → reach_out_gggg(X, Y, Edges, Visited)
reach_in_gggg(X, Z, Edges, Visited) → U2_gggg(X, Z, Edges, Visited, member1_in_gg(.(X, .(Y, [])), Edges))
member1_in_gg(H, .(H, L)) → member1_out_gg(H, .(H, L))
member1_in_gg(X, .(H, L)) → U6_gg(X, H, L, member1_in_gg(X, L))
U6_gg(X, H, L, member1_out_gg(X, L)) → member1_out_gg(X, .(H, L))
U2_gggg(X, Z, Edges, Visited, member1_out_gg(.(X, .(Y, [])), Edges)) → U3_gggg(X, Z, Edges, Visited, Y, member_in_ag(Y, Visited))
member_in_ag(H, .(H, L)) → member_out_ag(H, .(H, L))
member_in_ag(X, .(H, L)) → U5_ag(X, H, L, member_in_ag(X, L))
U5_ag(X, H, L, member_out_ag(X, L)) → member_out_ag(X, .(H, L))
U3_gggg(X, Z, Edges, Visited, Y, member_out_ag(Y, Visited)) → U4_gggg(X, Z, Edges, Visited, reach_in_aggg(Y, Z, Edges, .(Y, Visited)))
reach_in_aggg(X, Y, Edges, Visited) → U1_aggg(X, Y, Edges, Visited, member_in_gg(.(X, .(Y, [])), Edges))
U1_aggg(X, Y, Edges, Visited, member_out_gg(.(X, .(Y, [])), Edges)) → reach_out_aggg(X, Y, Edges, Visited)
reach_in_aggg(X, Z, Edges, Visited) → U2_aggg(X, Z, Edges, Visited, member1_in_gg(.(X, .(Y, [])), Edges))
U2_aggg(X, Z, Edges, Visited, member1_out_gg(.(X, .(Y, [])), Edges)) → U3_aggg(X, Z, Edges, Visited, Y, member_in_ag(Y, Visited))
U3_aggg(X, Z, Edges, Visited, Y, member_out_ag(Y, Visited)) → U4_aggg(X, Z, Edges, Visited, reach_in_aggg(Y, Z, Edges, .(Y, Visited)))
U4_aggg(X, Z, Edges, Visited, reach_out_aggg(Y, Z, Edges, .(Y, Visited))) → reach_out_aggg(X, Z, Edges, Visited)
U4_gggg(X, Z, Edges, Visited, reach_out_aggg(Y, Z, Edges, .(Y, Visited))) → reach_out_gggg(X, Z, Edges, Visited)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
↳ PrologToPiTRSProof
MEMBER_IN_GG(X, .(H, L)) → MEMBER_IN_GG(X, L)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PiDP
↳ PrologToPiTRSProof
MEMBER_IN_GG(X, .(L)) → MEMBER_IN_GG(X, L)
From the DPs we obtained the following set of size-change graphs:
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PrologToPiTRSProof
U3_AGGG(X, Z, Edges, Visited, Y, member_out_ag(Y, Visited)) → REACH_IN_AGGG(Y, Z, Edges, .(Y, Visited))
REACH_IN_AGGG(X, Z, Edges, Visited) → U2_AGGG(X, Z, Edges, Visited, member1_in_gg(.(X, .(Y, [])), Edges))
U2_AGGG(X, Z, Edges, Visited, member1_out_gg(.(X, .(Y, [])), Edges)) → U3_AGGG(X, Z, Edges, Visited, Y, member_in_ag(Y, Visited))
reach_in_gggg(X, Y, Edges, Visited) → U1_gggg(X, Y, Edges, Visited, member_in_gg(.(X, .(Y, [])), Edges))
member_in_gg(H, .(H, L)) → member_out_gg(H, .(H, L))
member_in_gg(X, .(H, L)) → U5_gg(X, H, L, member_in_gg(X, L))
U5_gg(X, H, L, member_out_gg(X, L)) → member_out_gg(X, .(H, L))
U1_gggg(X, Y, Edges, Visited, member_out_gg(.(X, .(Y, [])), Edges)) → reach_out_gggg(X, Y, Edges, Visited)
reach_in_gggg(X, Z, Edges, Visited) → U2_gggg(X, Z, Edges, Visited, member1_in_gg(.(X, .(Y, [])), Edges))
member1_in_gg(H, .(H, L)) → member1_out_gg(H, .(H, L))
member1_in_gg(X, .(H, L)) → U6_gg(X, H, L, member1_in_gg(X, L))
U6_gg(X, H, L, member1_out_gg(X, L)) → member1_out_gg(X, .(H, L))
U2_gggg(X, Z, Edges, Visited, member1_out_gg(.(X, .(Y, [])), Edges)) → U3_gggg(X, Z, Edges, Visited, Y, member_in_ag(Y, Visited))
member_in_ag(H, .(H, L)) → member_out_ag(H, .(H, L))
member_in_ag(X, .(H, L)) → U5_ag(X, H, L, member_in_ag(X, L))
U5_ag(X, H, L, member_out_ag(X, L)) → member_out_ag(X, .(H, L))
U3_gggg(X, Z, Edges, Visited, Y, member_out_ag(Y, Visited)) → U4_gggg(X, Z, Edges, Visited, reach_in_aggg(Y, Z, Edges, .(Y, Visited)))
reach_in_aggg(X, Y, Edges, Visited) → U1_aggg(X, Y, Edges, Visited, member_in_gg(.(X, .(Y, [])), Edges))
U1_aggg(X, Y, Edges, Visited, member_out_gg(.(X, .(Y, [])), Edges)) → reach_out_aggg(X, Y, Edges, Visited)
reach_in_aggg(X, Z, Edges, Visited) → U2_aggg(X, Z, Edges, Visited, member1_in_gg(.(X, .(Y, [])), Edges))
U2_aggg(X, Z, Edges, Visited, member1_out_gg(.(X, .(Y, [])), Edges)) → U3_aggg(X, Z, Edges, Visited, Y, member_in_ag(Y, Visited))
U3_aggg(X, Z, Edges, Visited, Y, member_out_ag(Y, Visited)) → U4_aggg(X, Z, Edges, Visited, reach_in_aggg(Y, Z, Edges, .(Y, Visited)))
U4_aggg(X, Z, Edges, Visited, reach_out_aggg(Y, Z, Edges, .(Y, Visited))) → reach_out_aggg(X, Z, Edges, Visited)
U4_gggg(X, Z, Edges, Visited, reach_out_aggg(Y, Z, Edges, .(Y, Visited))) → reach_out_gggg(X, Z, Edges, Visited)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PrologToPiTRSProof
U3_AGGG(X, Z, Edges, Visited, Y, member_out_ag(Y, Visited)) → REACH_IN_AGGG(Y, Z, Edges, .(Y, Visited))
REACH_IN_AGGG(X, Z, Edges, Visited) → U2_AGGG(X, Z, Edges, Visited, member1_in_gg(.(X, .(Y, [])), Edges))
U2_AGGG(X, Z, Edges, Visited, member1_out_gg(.(X, .(Y, [])), Edges)) → U3_AGGG(X, Z, Edges, Visited, Y, member_in_ag(Y, Visited))
member1_in_gg(H, .(H, L)) → member1_out_gg(H, .(H, L))
member1_in_gg(X, .(H, L)) → U6_gg(X, H, L, member1_in_gg(X, L))
member_in_ag(H, .(H, L)) → member_out_ag(H, .(H, L))
member_in_ag(X, .(H, L)) → U5_ag(X, H, L, member_in_ag(X, L))
U6_gg(X, H, L, member1_out_gg(X, L)) → member1_out_gg(X, .(H, L))
U5_ag(X, H, L, member_out_ag(X, L)) → member_out_ag(X, .(H, L))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ Narrowing
↳ PrologToPiTRSProof
REACH_IN_AGGG(Z, Edges, Visited) → U2_AGGG(Z, Edges, Visited, member1_in_gg(.(.([])), Edges))
U2_AGGG(Z, Edges, Visited, member1_out_gg) → U3_AGGG(Z, Edges, Visited, member_in_ag(Visited))
U3_AGGG(Z, Edges, Visited, member_out_ag) → REACH_IN_AGGG(Z, Edges, .(Visited))
member1_in_gg(H, .(L)) → member1_out_gg
member1_in_gg(X, .(L)) → U6_gg(member1_in_gg(X, L))
member_in_ag(.(L)) → member_out_ag
member_in_ag(.(L)) → U5_ag(member_in_ag(L))
U6_gg(member1_out_gg) → member1_out_gg
U5_ag(member_out_ag) → member_out_ag
member1_in_gg(x0, x1)
member_in_ag(x0)
U6_gg(x0)
U5_ag(x0)
REACH_IN_AGGG(y0, .(x1), y2) → U2_AGGG(y0, .(x1), y2, member1_out_gg)
REACH_IN_AGGG(y0, .(x1), y2) → U2_AGGG(y0, .(x1), y2, U6_gg(member1_in_gg(.(.([])), x1)))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ PrologToPiTRSProof
U2_AGGG(Z, Edges, Visited, member1_out_gg) → U3_AGGG(Z, Edges, Visited, member_in_ag(Visited))
REACH_IN_AGGG(y0, .(x1), y2) → U2_AGGG(y0, .(x1), y2, member1_out_gg)
U3_AGGG(Z, Edges, Visited, member_out_ag) → REACH_IN_AGGG(Z, Edges, .(Visited))
REACH_IN_AGGG(y0, .(x1), y2) → U2_AGGG(y0, .(x1), y2, U6_gg(member1_in_gg(.(.([])), x1)))
member1_in_gg(H, .(L)) → member1_out_gg
member1_in_gg(X, .(L)) → U6_gg(member1_in_gg(X, L))
member_in_ag(.(L)) → member_out_ag
member_in_ag(.(L)) → U5_ag(member_in_ag(L))
U6_gg(member1_out_gg) → member1_out_gg
U5_ag(member_out_ag) → member_out_ag
member1_in_gg(x0, x1)
member_in_ag(x0)
U6_gg(x0)
U5_ag(x0)
U2_AGGG(y0, y1, .(x0), member1_out_gg) → U3_AGGG(y0, y1, .(x0), U5_ag(member_in_ag(x0)))
U2_AGGG(y0, y1, .(x0), member1_out_gg) → U3_AGGG(y0, y1, .(x0), member_out_ag)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Instantiation
↳ PrologToPiTRSProof
U2_AGGG(y0, y1, .(x0), member1_out_gg) → U3_AGGG(y0, y1, .(x0), member_out_ag)
REACH_IN_AGGG(y0, .(x1), y2) → U2_AGGG(y0, .(x1), y2, member1_out_gg)
U2_AGGG(y0, y1, .(x0), member1_out_gg) → U3_AGGG(y0, y1, .(x0), U5_ag(member_in_ag(x0)))
U3_AGGG(Z, Edges, Visited, member_out_ag) → REACH_IN_AGGG(Z, Edges, .(Visited))
REACH_IN_AGGG(y0, .(x1), y2) → U2_AGGG(y0, .(x1), y2, U6_gg(member1_in_gg(.(.([])), x1)))
member1_in_gg(H, .(L)) → member1_out_gg
member1_in_gg(X, .(L)) → U6_gg(member1_in_gg(X, L))
member_in_ag(.(L)) → member_out_ag
member_in_ag(.(L)) → U5_ag(member_in_ag(L))
U6_gg(member1_out_gg) → member1_out_gg
U5_ag(member_out_ag) → member_out_ag
member1_in_gg(x0, x1)
member_in_ag(x0)
U6_gg(x0)
U5_ag(x0)
U3_AGGG(z0, z1, .(z2), member_out_ag) → REACH_IN_AGGG(z0, z1, .(.(z2)))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ PrologToPiTRSProof
U2_AGGG(y0, y1, .(x0), member1_out_gg) → U3_AGGG(y0, y1, .(x0), member_out_ag)
REACH_IN_AGGG(y0, .(x1), y2) → U2_AGGG(y0, .(x1), y2, member1_out_gg)
U2_AGGG(y0, y1, .(x0), member1_out_gg) → U3_AGGG(y0, y1, .(x0), U5_ag(member_in_ag(x0)))
U3_AGGG(z0, z1, .(z2), member_out_ag) → REACH_IN_AGGG(z0, z1, .(.(z2)))
REACH_IN_AGGG(y0, .(x1), y2) → U2_AGGG(y0, .(x1), y2, U6_gg(member1_in_gg(.(.([])), x1)))
member1_in_gg(H, .(L)) → member1_out_gg
member1_in_gg(X, .(L)) → U6_gg(member1_in_gg(X, L))
member_in_ag(.(L)) → member_out_ag
member_in_ag(.(L)) → U5_ag(member_in_ag(L))
U6_gg(member1_out_gg) → member1_out_gg
U5_ag(member_out_ag) → member_out_ag
member1_in_gg(x0, x1)
member_in_ag(x0)
U6_gg(x0)
U5_ag(x0)
REACH_IN_AGGG(z0, .(x1), .(.(z2))) → U2_AGGG(z0, .(x1), .(.(z2)), member1_out_gg)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ PrologToPiTRSProof
REACH_IN_AGGG(z0, .(x1), .(.(z2))) → U2_AGGG(z0, .(x1), .(.(z2)), member1_out_gg)
U2_AGGG(y0, y1, .(x0), member1_out_gg) → U3_AGGG(y0, y1, .(x0), member_out_ag)
U2_AGGG(y0, y1, .(x0), member1_out_gg) → U3_AGGG(y0, y1, .(x0), U5_ag(member_in_ag(x0)))
U3_AGGG(z0, z1, .(z2), member_out_ag) → REACH_IN_AGGG(z0, z1, .(.(z2)))
REACH_IN_AGGG(y0, .(x1), y2) → U2_AGGG(y0, .(x1), y2, U6_gg(member1_in_gg(.(.([])), x1)))
member1_in_gg(H, .(L)) → member1_out_gg
member1_in_gg(X, .(L)) → U6_gg(member1_in_gg(X, L))
member_in_ag(.(L)) → member_out_ag
member_in_ag(.(L)) → U5_ag(member_in_ag(L))
U6_gg(member1_out_gg) → member1_out_gg
U5_ag(member_out_ag) → member_out_ag
member1_in_gg(x0, x1)
member_in_ag(x0)
U6_gg(x0)
U5_ag(x0)
REACH_IN_AGGG(z0, .(x1), .(.(z2))) → U2_AGGG(z0, .(x1), .(.(z2)), U6_gg(member1_in_gg(.(.([])), x1)))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ PrologToPiTRSProof
REACH_IN_AGGG(z0, .(x1), .(.(z2))) → U2_AGGG(z0, .(x1), .(.(z2)), member1_out_gg)
REACH_IN_AGGG(z0, .(x1), .(.(z2))) → U2_AGGG(z0, .(x1), .(.(z2)), U6_gg(member1_in_gg(.(.([])), x1)))
U2_AGGG(y0, y1, .(x0), member1_out_gg) → U3_AGGG(y0, y1, .(x0), member_out_ag)
U2_AGGG(y0, y1, .(x0), member1_out_gg) → U3_AGGG(y0, y1, .(x0), U5_ag(member_in_ag(x0)))
U3_AGGG(z0, z1, .(z2), member_out_ag) → REACH_IN_AGGG(z0, z1, .(.(z2)))
member1_in_gg(H, .(L)) → member1_out_gg
member1_in_gg(X, .(L)) → U6_gg(member1_in_gg(X, L))
member_in_ag(.(L)) → member_out_ag
member_in_ag(.(L)) → U5_ag(member_in_ag(L))
U6_gg(member1_out_gg) → member1_out_gg
U5_ag(member_out_ag) → member_out_ag
member1_in_gg(x0, x1)
member_in_ag(x0)
U6_gg(x0)
U5_ag(x0)
U2_AGGG(z0, .(z1), .(.(z2)), member1_out_gg) → U3_AGGG(z0, .(z1), .(.(z2)), U5_ag(member_in_ag(.(z2))))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ PrologToPiTRSProof
REACH_IN_AGGG(z0, .(x1), .(.(z2))) → U2_AGGG(z0, .(x1), .(.(z2)), member1_out_gg)
REACH_IN_AGGG(z0, .(x1), .(.(z2))) → U2_AGGG(z0, .(x1), .(.(z2)), U6_gg(member1_in_gg(.(.([])), x1)))
U2_AGGG(y0, y1, .(x0), member1_out_gg) → U3_AGGG(y0, y1, .(x0), member_out_ag)
U3_AGGG(z0, z1, .(z2), member_out_ag) → REACH_IN_AGGG(z0, z1, .(.(z2)))
U2_AGGG(z0, .(z1), .(.(z2)), member1_out_gg) → U3_AGGG(z0, .(z1), .(.(z2)), U5_ag(member_in_ag(.(z2))))
member1_in_gg(H, .(L)) → member1_out_gg
member1_in_gg(X, .(L)) → U6_gg(member1_in_gg(X, L))
member_in_ag(.(L)) → member_out_ag
member_in_ag(.(L)) → U5_ag(member_in_ag(L))
U6_gg(member1_out_gg) → member1_out_gg
U5_ag(member_out_ag) → member_out_ag
member1_in_gg(x0, x1)
member_in_ag(x0)
U6_gg(x0)
U5_ag(x0)
U2_AGGG(z0, .(z1), .(.(z2)), member1_out_gg) → U3_AGGG(z0, .(z1), .(.(z2)), member_out_ag)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ PrologToPiTRSProof
REACH_IN_AGGG(z0, .(x1), .(.(z2))) → U2_AGGG(z0, .(x1), .(.(z2)), member1_out_gg)
REACH_IN_AGGG(z0, .(x1), .(.(z2))) → U2_AGGG(z0, .(x1), .(.(z2)), U6_gg(member1_in_gg(.(.([])), x1)))
U2_AGGG(z0, .(z1), .(.(z2)), member1_out_gg) → U3_AGGG(z0, .(z1), .(.(z2)), member_out_ag)
U3_AGGG(z0, z1, .(z2), member_out_ag) → REACH_IN_AGGG(z0, z1, .(.(z2)))
U2_AGGG(z0, .(z1), .(.(z2)), member1_out_gg) → U3_AGGG(z0, .(z1), .(.(z2)), U5_ag(member_in_ag(.(z2))))
member1_in_gg(H, .(L)) → member1_out_gg
member1_in_gg(X, .(L)) → U6_gg(member1_in_gg(X, L))
member_in_ag(.(L)) → member_out_ag
member_in_ag(.(L)) → U5_ag(member_in_ag(L))
U6_gg(member1_out_gg) → member1_out_gg
U5_ag(member_out_ag) → member_out_ag
member1_in_gg(x0, x1)
member_in_ag(x0)
U6_gg(x0)
U5_ag(x0)
U3_AGGG(z0, .(z1), .(.(z2)), member_out_ag) → REACH_IN_AGGG(z0, .(z1), .(.(.(z2))))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ PrologToPiTRSProof
REACH_IN_AGGG(z0, .(x1), .(.(z2))) → U2_AGGG(z0, .(x1), .(.(z2)), member1_out_gg)
REACH_IN_AGGG(z0, .(x1), .(.(z2))) → U2_AGGG(z0, .(x1), .(.(z2)), U6_gg(member1_in_gg(.(.([])), x1)))
U3_AGGG(z0, .(z1), .(.(z2)), member_out_ag) → REACH_IN_AGGG(z0, .(z1), .(.(.(z2))))
U2_AGGG(z0, .(z1), .(.(z2)), member1_out_gg) → U3_AGGG(z0, .(z1), .(.(z2)), member_out_ag)
U2_AGGG(z0, .(z1), .(.(z2)), member1_out_gg) → U3_AGGG(z0, .(z1), .(.(z2)), U5_ag(member_in_ag(.(z2))))
member1_in_gg(H, .(L)) → member1_out_gg
member1_in_gg(X, .(L)) → U6_gg(member1_in_gg(X, L))
member_in_ag(.(L)) → member_out_ag
member_in_ag(.(L)) → U5_ag(member_in_ag(L))
U6_gg(member1_out_gg) → member1_out_gg
U5_ag(member_out_ag) → member_out_ag
member1_in_gg(x0, x1)
member_in_ag(x0)
U6_gg(x0)
U5_ag(x0)
REACH_IN_AGGG(z0, .(z1), .(.(.(z2)))) → U2_AGGG(z0, .(z1), .(.(.(z2))), member1_out_gg)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ PrologToPiTRSProof
REACH_IN_AGGG(z0, .(x1), .(.(z2))) → U2_AGGG(z0, .(x1), .(.(z2)), U6_gg(member1_in_gg(.(.([])), x1)))
U2_AGGG(z0, .(z1), .(.(z2)), member1_out_gg) → U3_AGGG(z0, .(z1), .(.(z2)), member_out_ag)
U3_AGGG(z0, .(z1), .(.(z2)), member_out_ag) → REACH_IN_AGGG(z0, .(z1), .(.(.(z2))))
REACH_IN_AGGG(z0, .(z1), .(.(.(z2)))) → U2_AGGG(z0, .(z1), .(.(.(z2))), member1_out_gg)
U2_AGGG(z0, .(z1), .(.(z2)), member1_out_gg) → U3_AGGG(z0, .(z1), .(.(z2)), U5_ag(member_in_ag(.(z2))))
member1_in_gg(H, .(L)) → member1_out_gg
member1_in_gg(X, .(L)) → U6_gg(member1_in_gg(X, L))
member_in_ag(.(L)) → member_out_ag
member_in_ag(.(L)) → U5_ag(member_in_ag(L))
U6_gg(member1_out_gg) → member1_out_gg
U5_ag(member_out_ag) → member_out_ag
member1_in_gg(x0, x1)
member_in_ag(x0)
U6_gg(x0)
U5_ag(x0)
REACH_IN_AGGG(z0, .(z1), .(.(.(z2)))) → U2_AGGG(z0, .(z1), .(.(.(z2))), U6_gg(member1_in_gg(.(.([])), z1)))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ PrologToPiTRSProof
U3_AGGG(z0, .(z1), .(.(z2)), member_out_ag) → REACH_IN_AGGG(z0, .(z1), .(.(.(z2))))
U2_AGGG(z0, .(z1), .(.(z2)), member1_out_gg) → U3_AGGG(z0, .(z1), .(.(z2)), member_out_ag)
REACH_IN_AGGG(z0, .(z1), .(.(.(z2)))) → U2_AGGG(z0, .(z1), .(.(.(z2))), U6_gg(member1_in_gg(.(.([])), z1)))
REACH_IN_AGGG(z0, .(z1), .(.(.(z2)))) → U2_AGGG(z0, .(z1), .(.(.(z2))), member1_out_gg)
U2_AGGG(z0, .(z1), .(.(z2)), member1_out_gg) → U3_AGGG(z0, .(z1), .(.(z2)), U5_ag(member_in_ag(.(z2))))
member1_in_gg(H, .(L)) → member1_out_gg
member1_in_gg(X, .(L)) → U6_gg(member1_in_gg(X, L))
member_in_ag(.(L)) → member_out_ag
member_in_ag(.(L)) → U5_ag(member_in_ag(L))
U6_gg(member1_out_gg) → member1_out_gg
U5_ag(member_out_ag) → member_out_ag
member1_in_gg(x0, x1)
member_in_ag(x0)
U6_gg(x0)
U5_ag(x0)
U2_AGGG(z0, .(z1), .(.(.(z2))), member1_out_gg) → U3_AGGG(z0, .(z1), .(.(.(z2))), U5_ag(member_in_ag(.(.(z2)))))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ PrologToPiTRSProof
U2_AGGG(z0, .(z1), .(.(z2)), member1_out_gg) → U3_AGGG(z0, .(z1), .(.(z2)), member_out_ag)
U3_AGGG(z0, .(z1), .(.(z2)), member_out_ag) → REACH_IN_AGGG(z0, .(z1), .(.(.(z2))))
U2_AGGG(z0, .(z1), .(.(.(z2))), member1_out_gg) → U3_AGGG(z0, .(z1), .(.(.(z2))), U5_ag(member_in_ag(.(.(z2)))))
REACH_IN_AGGG(z0, .(z1), .(.(.(z2)))) → U2_AGGG(z0, .(z1), .(.(.(z2))), U6_gg(member1_in_gg(.(.([])), z1)))
REACH_IN_AGGG(z0, .(z1), .(.(.(z2)))) → U2_AGGG(z0, .(z1), .(.(.(z2))), member1_out_gg)
member1_in_gg(H, .(L)) → member1_out_gg
member1_in_gg(X, .(L)) → U6_gg(member1_in_gg(X, L))
member_in_ag(.(L)) → member_out_ag
member_in_ag(.(L)) → U5_ag(member_in_ag(L))
U6_gg(member1_out_gg) → member1_out_gg
U5_ag(member_out_ag) → member_out_ag
member1_in_gg(x0, x1)
member_in_ag(x0)
U6_gg(x0)
U5_ag(x0)
U2_AGGG(z0, .(z1), .(.(.(z2))), member1_out_gg) → U3_AGGG(z0, .(z1), .(.(.(z2))), member_out_ag)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ NonTerminationProof
↳ PrologToPiTRSProof
U3_AGGG(z0, .(z1), .(.(z2)), member_out_ag) → REACH_IN_AGGG(z0, .(z1), .(.(.(z2))))
U2_AGGG(z0, .(z1), .(.(.(z2))), member1_out_gg) → U3_AGGG(z0, .(z1), .(.(.(z2))), member_out_ag)
U2_AGGG(z0, .(z1), .(.(.(z2))), member1_out_gg) → U3_AGGG(z0, .(z1), .(.(.(z2))), U5_ag(member_in_ag(.(.(z2)))))
REACH_IN_AGGG(z0, .(z1), .(.(.(z2)))) → U2_AGGG(z0, .(z1), .(.(.(z2))), U6_gg(member1_in_gg(.(.([])), z1)))
REACH_IN_AGGG(z0, .(z1), .(.(.(z2)))) → U2_AGGG(z0, .(z1), .(.(.(z2))), member1_out_gg)
member1_in_gg(H, .(L)) → member1_out_gg
member1_in_gg(X, .(L)) → U6_gg(member1_in_gg(X, L))
member_in_ag(.(L)) → member_out_ag
member_in_ag(.(L)) → U5_ag(member_in_ag(L))
U6_gg(member1_out_gg) → member1_out_gg
U5_ag(member_out_ag) → member_out_ag
member1_in_gg(x0, x1)
member_in_ag(x0)
U6_gg(x0)
U5_ag(x0)
U3_AGGG(z0, .(z1), .(.(z2)), member_out_ag) → REACH_IN_AGGG(z0, .(z1), .(.(.(z2))))
U2_AGGG(z0, .(z1), .(.(.(z2))), member1_out_gg) → U3_AGGG(z0, .(z1), .(.(.(z2))), member_out_ag)
U2_AGGG(z0, .(z1), .(.(.(z2))), member1_out_gg) → U3_AGGG(z0, .(z1), .(.(.(z2))), U5_ag(member_in_ag(.(.(z2)))))
REACH_IN_AGGG(z0, .(z1), .(.(.(z2)))) → U2_AGGG(z0, .(z1), .(.(.(z2))), U6_gg(member1_in_gg(.(.([])), z1)))
REACH_IN_AGGG(z0, .(z1), .(.(.(z2)))) → U2_AGGG(z0, .(z1), .(.(.(z2))), member1_out_gg)
member1_in_gg(H, .(L)) → member1_out_gg
member1_in_gg(X, .(L)) → U6_gg(member1_in_gg(X, L))
member_in_ag(.(L)) → member_out_ag
member_in_ag(.(L)) → U5_ag(member_in_ag(L))
U6_gg(member1_out_gg) → member1_out_gg
U5_ag(member_out_ag) → member_out_ag
reach_in_gggg(X, Y, Edges, Visited) → U1_gggg(X, Y, Edges, Visited, member_in_gg(.(X, .(Y, [])), Edges))
member_in_gg(H, .(H, L)) → member_out_gg(H, .(H, L))
member_in_gg(X, .(H, L)) → U5_gg(X, H, L, member_in_gg(X, L))
U5_gg(X, H, L, member_out_gg(X, L)) → member_out_gg(X, .(H, L))
U1_gggg(X, Y, Edges, Visited, member_out_gg(.(X, .(Y, [])), Edges)) → reach_out_gggg(X, Y, Edges, Visited)
reach_in_gggg(X, Z, Edges, Visited) → U2_gggg(X, Z, Edges, Visited, member1_in_gg(.(X, .(Y, [])), Edges))
member1_in_gg(H, .(H, L)) → member1_out_gg(H, .(H, L))
member1_in_gg(X, .(H, L)) → U6_gg(X, H, L, member1_in_gg(X, L))
U6_gg(X, H, L, member1_out_gg(X, L)) → member1_out_gg(X, .(H, L))
U2_gggg(X, Z, Edges, Visited, member1_out_gg(.(X, .(Y, [])), Edges)) → U3_gggg(X, Z, Edges, Visited, Y, member_in_ag(Y, Visited))
member_in_ag(H, .(H, L)) → member_out_ag(H, .(H, L))
member_in_ag(X, .(H, L)) → U5_ag(X, H, L, member_in_ag(X, L))
U5_ag(X, H, L, member_out_ag(X, L)) → member_out_ag(X, .(H, L))
U3_gggg(X, Z, Edges, Visited, Y, member_out_ag(Y, Visited)) → U4_gggg(X, Z, Edges, Visited, reach_in_aggg(Y, Z, Edges, .(Y, Visited)))
reach_in_aggg(X, Y, Edges, Visited) → U1_aggg(X, Y, Edges, Visited, member_in_gg(.(X, .(Y, [])), Edges))
U1_aggg(X, Y, Edges, Visited, member_out_gg(.(X, .(Y, [])), Edges)) → reach_out_aggg(X, Y, Edges, Visited)
reach_in_aggg(X, Z, Edges, Visited) → U2_aggg(X, Z, Edges, Visited, member1_in_gg(.(X, .(Y, [])), Edges))
U2_aggg(X, Z, Edges, Visited, member1_out_gg(.(X, .(Y, [])), Edges)) → U3_aggg(X, Z, Edges, Visited, Y, member_in_ag(Y, Visited))
U3_aggg(X, Z, Edges, Visited, Y, member_out_ag(Y, Visited)) → U4_aggg(X, Z, Edges, Visited, reach_in_aggg(Y, Z, Edges, .(Y, Visited)))
U4_aggg(X, Z, Edges, Visited, reach_out_aggg(Y, Z, Edges, .(Y, Visited))) → reach_out_aggg(X, Z, Edges, Visited)
U4_gggg(X, Z, Edges, Visited, reach_out_aggg(Y, Z, Edges, .(Y, Visited))) → reach_out_gggg(X, Z, Edges, Visited)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
reach_in_gggg(X, Y, Edges, Visited) → U1_gggg(X, Y, Edges, Visited, member_in_gg(.(X, .(Y, [])), Edges))
member_in_gg(H, .(H, L)) → member_out_gg(H, .(H, L))
member_in_gg(X, .(H, L)) → U5_gg(X, H, L, member_in_gg(X, L))
U5_gg(X, H, L, member_out_gg(X, L)) → member_out_gg(X, .(H, L))
U1_gggg(X, Y, Edges, Visited, member_out_gg(.(X, .(Y, [])), Edges)) → reach_out_gggg(X, Y, Edges, Visited)
reach_in_gggg(X, Z, Edges, Visited) → U2_gggg(X, Z, Edges, Visited, member1_in_gg(.(X, .(Y, [])), Edges))
member1_in_gg(H, .(H, L)) → member1_out_gg(H, .(H, L))
member1_in_gg(X, .(H, L)) → U6_gg(X, H, L, member1_in_gg(X, L))
U6_gg(X, H, L, member1_out_gg(X, L)) → member1_out_gg(X, .(H, L))
U2_gggg(X, Z, Edges, Visited, member1_out_gg(.(X, .(Y, [])), Edges)) → U3_gggg(X, Z, Edges, Visited, Y, member_in_ag(Y, Visited))
member_in_ag(H, .(H, L)) → member_out_ag(H, .(H, L))
member_in_ag(X, .(H, L)) → U5_ag(X, H, L, member_in_ag(X, L))
U5_ag(X, H, L, member_out_ag(X, L)) → member_out_ag(X, .(H, L))
U3_gggg(X, Z, Edges, Visited, Y, member_out_ag(Y, Visited)) → U4_gggg(X, Z, Edges, Visited, reach_in_aggg(Y, Z, Edges, .(Y, Visited)))
reach_in_aggg(X, Y, Edges, Visited) → U1_aggg(X, Y, Edges, Visited, member_in_gg(.(X, .(Y, [])), Edges))
U1_aggg(X, Y, Edges, Visited, member_out_gg(.(X, .(Y, [])), Edges)) → reach_out_aggg(X, Y, Edges, Visited)
reach_in_aggg(X, Z, Edges, Visited) → U2_aggg(X, Z, Edges, Visited, member1_in_gg(.(X, .(Y, [])), Edges))
U2_aggg(X, Z, Edges, Visited, member1_out_gg(.(X, .(Y, [])), Edges)) → U3_aggg(X, Z, Edges, Visited, Y, member_in_ag(Y, Visited))
U3_aggg(X, Z, Edges, Visited, Y, member_out_ag(Y, Visited)) → U4_aggg(X, Z, Edges, Visited, reach_in_aggg(Y, Z, Edges, .(Y, Visited)))
U4_aggg(X, Z, Edges, Visited, reach_out_aggg(Y, Z, Edges, .(Y, Visited))) → reach_out_aggg(X, Z, Edges, Visited)
U4_gggg(X, Z, Edges, Visited, reach_out_aggg(Y, Z, Edges, .(Y, Visited))) → reach_out_gggg(X, Z, Edges, Visited)
REACH_IN_GGGG(X, Y, Edges, Visited) → U1_GGGG(X, Y, Edges, Visited, member_in_gg(.(X, .(Y, [])), Edges))
REACH_IN_GGGG(X, Y, Edges, Visited) → MEMBER_IN_GG(.(X, .(Y, [])), Edges)
MEMBER_IN_GG(X, .(H, L)) → U5_GG(X, H, L, member_in_gg(X, L))
MEMBER_IN_GG(X, .(H, L)) → MEMBER_IN_GG(X, L)
REACH_IN_GGGG(X, Z, Edges, Visited) → U2_GGGG(X, Z, Edges, Visited, member1_in_gg(.(X, .(Y, [])), Edges))
REACH_IN_GGGG(X, Z, Edges, Visited) → MEMBER1_IN_GG(.(X, .(Y, [])), Edges)
MEMBER1_IN_GG(X, .(H, L)) → U6_GG(X, H, L, member1_in_gg(X, L))
MEMBER1_IN_GG(X, .(H, L)) → MEMBER1_IN_GG(X, L)
U2_GGGG(X, Z, Edges, Visited, member1_out_gg(.(X, .(Y, [])), Edges)) → U3_GGGG(X, Z, Edges, Visited, Y, member_in_ag(Y, Visited))
U2_GGGG(X, Z, Edges, Visited, member1_out_gg(.(X, .(Y, [])), Edges)) → MEMBER_IN_AG(Y, Visited)
MEMBER_IN_AG(X, .(H, L)) → U5_AG(X, H, L, member_in_ag(X, L))
MEMBER_IN_AG(X, .(H, L)) → MEMBER_IN_AG(X, L)
U3_GGGG(X, Z, Edges, Visited, Y, member_out_ag(Y, Visited)) → U4_GGGG(X, Z, Edges, Visited, reach_in_aggg(Y, Z, Edges, .(Y, Visited)))
U3_GGGG(X, Z, Edges, Visited, Y, member_out_ag(Y, Visited)) → REACH_IN_AGGG(Y, Z, Edges, .(Y, Visited))
REACH_IN_AGGG(X, Y, Edges, Visited) → U1_AGGG(X, Y, Edges, Visited, member_in_gg(.(X, .(Y, [])), Edges))
REACH_IN_AGGG(X, Y, Edges, Visited) → MEMBER_IN_GG(.(X, .(Y, [])), Edges)
REACH_IN_AGGG(X, Z, Edges, Visited) → U2_AGGG(X, Z, Edges, Visited, member1_in_gg(.(X, .(Y, [])), Edges))
REACH_IN_AGGG(X, Z, Edges, Visited) → MEMBER1_IN_GG(.(X, .(Y, [])), Edges)
U2_AGGG(X, Z, Edges, Visited, member1_out_gg(.(X, .(Y, [])), Edges)) → U3_AGGG(X, Z, Edges, Visited, Y, member_in_ag(Y, Visited))
U2_AGGG(X, Z, Edges, Visited, member1_out_gg(.(X, .(Y, [])), Edges)) → MEMBER_IN_AG(Y, Visited)
U3_AGGG(X, Z, Edges, Visited, Y, member_out_ag(Y, Visited)) → U4_AGGG(X, Z, Edges, Visited, reach_in_aggg(Y, Z, Edges, .(Y, Visited)))
U3_AGGG(X, Z, Edges, Visited, Y, member_out_ag(Y, Visited)) → REACH_IN_AGGG(Y, Z, Edges, .(Y, Visited))
reach_in_gggg(X, Y, Edges, Visited) → U1_gggg(X, Y, Edges, Visited, member_in_gg(.(X, .(Y, [])), Edges))
member_in_gg(H, .(H, L)) → member_out_gg(H, .(H, L))
member_in_gg(X, .(H, L)) → U5_gg(X, H, L, member_in_gg(X, L))
U5_gg(X, H, L, member_out_gg(X, L)) → member_out_gg(X, .(H, L))
U1_gggg(X, Y, Edges, Visited, member_out_gg(.(X, .(Y, [])), Edges)) → reach_out_gggg(X, Y, Edges, Visited)
reach_in_gggg(X, Z, Edges, Visited) → U2_gggg(X, Z, Edges, Visited, member1_in_gg(.(X, .(Y, [])), Edges))
member1_in_gg(H, .(H, L)) → member1_out_gg(H, .(H, L))
member1_in_gg(X, .(H, L)) → U6_gg(X, H, L, member1_in_gg(X, L))
U6_gg(X, H, L, member1_out_gg(X, L)) → member1_out_gg(X, .(H, L))
U2_gggg(X, Z, Edges, Visited, member1_out_gg(.(X, .(Y, [])), Edges)) → U3_gggg(X, Z, Edges, Visited, Y, member_in_ag(Y, Visited))
member_in_ag(H, .(H, L)) → member_out_ag(H, .(H, L))
member_in_ag(X, .(H, L)) → U5_ag(X, H, L, member_in_ag(X, L))
U5_ag(X, H, L, member_out_ag(X, L)) → member_out_ag(X, .(H, L))
U3_gggg(X, Z, Edges, Visited, Y, member_out_ag(Y, Visited)) → U4_gggg(X, Z, Edges, Visited, reach_in_aggg(Y, Z, Edges, .(Y, Visited)))
reach_in_aggg(X, Y, Edges, Visited) → U1_aggg(X, Y, Edges, Visited, member_in_gg(.(X, .(Y, [])), Edges))
U1_aggg(X, Y, Edges, Visited, member_out_gg(.(X, .(Y, [])), Edges)) → reach_out_aggg(X, Y, Edges, Visited)
reach_in_aggg(X, Z, Edges, Visited) → U2_aggg(X, Z, Edges, Visited, member1_in_gg(.(X, .(Y, [])), Edges))
U2_aggg(X, Z, Edges, Visited, member1_out_gg(.(X, .(Y, [])), Edges)) → U3_aggg(X, Z, Edges, Visited, Y, member_in_ag(Y, Visited))
U3_aggg(X, Z, Edges, Visited, Y, member_out_ag(Y, Visited)) → U4_aggg(X, Z, Edges, Visited, reach_in_aggg(Y, Z, Edges, .(Y, Visited)))
U4_aggg(X, Z, Edges, Visited, reach_out_aggg(Y, Z, Edges, .(Y, Visited))) → reach_out_aggg(X, Z, Edges, Visited)
U4_gggg(X, Z, Edges, Visited, reach_out_aggg(Y, Z, Edges, .(Y, Visited))) → reach_out_gggg(X, Z, Edges, Visited)
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
REACH_IN_GGGG(X, Y, Edges, Visited) → U1_GGGG(X, Y, Edges, Visited, member_in_gg(.(X, .(Y, [])), Edges))
REACH_IN_GGGG(X, Y, Edges, Visited) → MEMBER_IN_GG(.(X, .(Y, [])), Edges)
MEMBER_IN_GG(X, .(H, L)) → U5_GG(X, H, L, member_in_gg(X, L))
MEMBER_IN_GG(X, .(H, L)) → MEMBER_IN_GG(X, L)
REACH_IN_GGGG(X, Z, Edges, Visited) → U2_GGGG(X, Z, Edges, Visited, member1_in_gg(.(X, .(Y, [])), Edges))
REACH_IN_GGGG(X, Z, Edges, Visited) → MEMBER1_IN_GG(.(X, .(Y, [])), Edges)
MEMBER1_IN_GG(X, .(H, L)) → U6_GG(X, H, L, member1_in_gg(X, L))
MEMBER1_IN_GG(X, .(H, L)) → MEMBER1_IN_GG(X, L)
U2_GGGG(X, Z, Edges, Visited, member1_out_gg(.(X, .(Y, [])), Edges)) → U3_GGGG(X, Z, Edges, Visited, Y, member_in_ag(Y, Visited))
U2_GGGG(X, Z, Edges, Visited, member1_out_gg(.(X, .(Y, [])), Edges)) → MEMBER_IN_AG(Y, Visited)
MEMBER_IN_AG(X, .(H, L)) → U5_AG(X, H, L, member_in_ag(X, L))
MEMBER_IN_AG(X, .(H, L)) → MEMBER_IN_AG(X, L)
U3_GGGG(X, Z, Edges, Visited, Y, member_out_ag(Y, Visited)) → U4_GGGG(X, Z, Edges, Visited, reach_in_aggg(Y, Z, Edges, .(Y, Visited)))
U3_GGGG(X, Z, Edges, Visited, Y, member_out_ag(Y, Visited)) → REACH_IN_AGGG(Y, Z, Edges, .(Y, Visited))
REACH_IN_AGGG(X, Y, Edges, Visited) → U1_AGGG(X, Y, Edges, Visited, member_in_gg(.(X, .(Y, [])), Edges))
REACH_IN_AGGG(X, Y, Edges, Visited) → MEMBER_IN_GG(.(X, .(Y, [])), Edges)
REACH_IN_AGGG(X, Z, Edges, Visited) → U2_AGGG(X, Z, Edges, Visited, member1_in_gg(.(X, .(Y, [])), Edges))
REACH_IN_AGGG(X, Z, Edges, Visited) → MEMBER1_IN_GG(.(X, .(Y, [])), Edges)
U2_AGGG(X, Z, Edges, Visited, member1_out_gg(.(X, .(Y, [])), Edges)) → U3_AGGG(X, Z, Edges, Visited, Y, member_in_ag(Y, Visited))
U2_AGGG(X, Z, Edges, Visited, member1_out_gg(.(X, .(Y, [])), Edges)) → MEMBER_IN_AG(Y, Visited)
U3_AGGG(X, Z, Edges, Visited, Y, member_out_ag(Y, Visited)) → U4_AGGG(X, Z, Edges, Visited, reach_in_aggg(Y, Z, Edges, .(Y, Visited)))
U3_AGGG(X, Z, Edges, Visited, Y, member_out_ag(Y, Visited)) → REACH_IN_AGGG(Y, Z, Edges, .(Y, Visited))
reach_in_gggg(X, Y, Edges, Visited) → U1_gggg(X, Y, Edges, Visited, member_in_gg(.(X, .(Y, [])), Edges))
member_in_gg(H, .(H, L)) → member_out_gg(H, .(H, L))
member_in_gg(X, .(H, L)) → U5_gg(X, H, L, member_in_gg(X, L))
U5_gg(X, H, L, member_out_gg(X, L)) → member_out_gg(X, .(H, L))
U1_gggg(X, Y, Edges, Visited, member_out_gg(.(X, .(Y, [])), Edges)) → reach_out_gggg(X, Y, Edges, Visited)
reach_in_gggg(X, Z, Edges, Visited) → U2_gggg(X, Z, Edges, Visited, member1_in_gg(.(X, .(Y, [])), Edges))
member1_in_gg(H, .(H, L)) → member1_out_gg(H, .(H, L))
member1_in_gg(X, .(H, L)) → U6_gg(X, H, L, member1_in_gg(X, L))
U6_gg(X, H, L, member1_out_gg(X, L)) → member1_out_gg(X, .(H, L))
U2_gggg(X, Z, Edges, Visited, member1_out_gg(.(X, .(Y, [])), Edges)) → U3_gggg(X, Z, Edges, Visited, Y, member_in_ag(Y, Visited))
member_in_ag(H, .(H, L)) → member_out_ag(H, .(H, L))
member_in_ag(X, .(H, L)) → U5_ag(X, H, L, member_in_ag(X, L))
U5_ag(X, H, L, member_out_ag(X, L)) → member_out_ag(X, .(H, L))
U3_gggg(X, Z, Edges, Visited, Y, member_out_ag(Y, Visited)) → U4_gggg(X, Z, Edges, Visited, reach_in_aggg(Y, Z, Edges, .(Y, Visited)))
reach_in_aggg(X, Y, Edges, Visited) → U1_aggg(X, Y, Edges, Visited, member_in_gg(.(X, .(Y, [])), Edges))
U1_aggg(X, Y, Edges, Visited, member_out_gg(.(X, .(Y, [])), Edges)) → reach_out_aggg(X, Y, Edges, Visited)
reach_in_aggg(X, Z, Edges, Visited) → U2_aggg(X, Z, Edges, Visited, member1_in_gg(.(X, .(Y, [])), Edges))
U2_aggg(X, Z, Edges, Visited, member1_out_gg(.(X, .(Y, [])), Edges)) → U3_aggg(X, Z, Edges, Visited, Y, member_in_ag(Y, Visited))
U3_aggg(X, Z, Edges, Visited, Y, member_out_ag(Y, Visited)) → U4_aggg(X, Z, Edges, Visited, reach_in_aggg(Y, Z, Edges, .(Y, Visited)))
U4_aggg(X, Z, Edges, Visited, reach_out_aggg(Y, Z, Edges, .(Y, Visited))) → reach_out_aggg(X, Z, Edges, Visited)
U4_gggg(X, Z, Edges, Visited, reach_out_aggg(Y, Z, Edges, .(Y, Visited))) → reach_out_gggg(X, Z, Edges, Visited)
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDP
↳ PiDP
MEMBER_IN_AG(X, .(H, L)) → MEMBER_IN_AG(X, L)
reach_in_gggg(X, Y, Edges, Visited) → U1_gggg(X, Y, Edges, Visited, member_in_gg(.(X, .(Y, [])), Edges))
member_in_gg(H, .(H, L)) → member_out_gg(H, .(H, L))
member_in_gg(X, .(H, L)) → U5_gg(X, H, L, member_in_gg(X, L))
U5_gg(X, H, L, member_out_gg(X, L)) → member_out_gg(X, .(H, L))
U1_gggg(X, Y, Edges, Visited, member_out_gg(.(X, .(Y, [])), Edges)) → reach_out_gggg(X, Y, Edges, Visited)
reach_in_gggg(X, Z, Edges, Visited) → U2_gggg(X, Z, Edges, Visited, member1_in_gg(.(X, .(Y, [])), Edges))
member1_in_gg(H, .(H, L)) → member1_out_gg(H, .(H, L))
member1_in_gg(X, .(H, L)) → U6_gg(X, H, L, member1_in_gg(X, L))
U6_gg(X, H, L, member1_out_gg(X, L)) → member1_out_gg(X, .(H, L))
U2_gggg(X, Z, Edges, Visited, member1_out_gg(.(X, .(Y, [])), Edges)) → U3_gggg(X, Z, Edges, Visited, Y, member_in_ag(Y, Visited))
member_in_ag(H, .(H, L)) → member_out_ag(H, .(H, L))
member_in_ag(X, .(H, L)) → U5_ag(X, H, L, member_in_ag(X, L))
U5_ag(X, H, L, member_out_ag(X, L)) → member_out_ag(X, .(H, L))
U3_gggg(X, Z, Edges, Visited, Y, member_out_ag(Y, Visited)) → U4_gggg(X, Z, Edges, Visited, reach_in_aggg(Y, Z, Edges, .(Y, Visited)))
reach_in_aggg(X, Y, Edges, Visited) → U1_aggg(X, Y, Edges, Visited, member_in_gg(.(X, .(Y, [])), Edges))
U1_aggg(X, Y, Edges, Visited, member_out_gg(.(X, .(Y, [])), Edges)) → reach_out_aggg(X, Y, Edges, Visited)
reach_in_aggg(X, Z, Edges, Visited) → U2_aggg(X, Z, Edges, Visited, member1_in_gg(.(X, .(Y, [])), Edges))
U2_aggg(X, Z, Edges, Visited, member1_out_gg(.(X, .(Y, [])), Edges)) → U3_aggg(X, Z, Edges, Visited, Y, member_in_ag(Y, Visited))
U3_aggg(X, Z, Edges, Visited, Y, member_out_ag(Y, Visited)) → U4_aggg(X, Z, Edges, Visited, reach_in_aggg(Y, Z, Edges, .(Y, Visited)))
U4_aggg(X, Z, Edges, Visited, reach_out_aggg(Y, Z, Edges, .(Y, Visited))) → reach_out_aggg(X, Z, Edges, Visited)
U4_gggg(X, Z, Edges, Visited, reach_out_aggg(Y, Z, Edges, .(Y, Visited))) → reach_out_gggg(X, Z, Edges, Visited)
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
↳ PiDP
↳ PiDP
MEMBER_IN_AG(X, .(H, L)) → MEMBER_IN_AG(X, L)
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PiDP
↳ PiDP
↳ PiDP
MEMBER_IN_AG(.(L)) → MEMBER_IN_AG(L)
From the DPs we obtained the following set of size-change graphs:
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDP
MEMBER1_IN_GG(X, .(H, L)) → MEMBER1_IN_GG(X, L)
reach_in_gggg(X, Y, Edges, Visited) → U1_gggg(X, Y, Edges, Visited, member_in_gg(.(X, .(Y, [])), Edges))
member_in_gg(H, .(H, L)) → member_out_gg(H, .(H, L))
member_in_gg(X, .(H, L)) → U5_gg(X, H, L, member_in_gg(X, L))
U5_gg(X, H, L, member_out_gg(X, L)) → member_out_gg(X, .(H, L))
U1_gggg(X, Y, Edges, Visited, member_out_gg(.(X, .(Y, [])), Edges)) → reach_out_gggg(X, Y, Edges, Visited)
reach_in_gggg(X, Z, Edges, Visited) → U2_gggg(X, Z, Edges, Visited, member1_in_gg(.(X, .(Y, [])), Edges))
member1_in_gg(H, .(H, L)) → member1_out_gg(H, .(H, L))
member1_in_gg(X, .(H, L)) → U6_gg(X, H, L, member1_in_gg(X, L))
U6_gg(X, H, L, member1_out_gg(X, L)) → member1_out_gg(X, .(H, L))
U2_gggg(X, Z, Edges, Visited, member1_out_gg(.(X, .(Y, [])), Edges)) → U3_gggg(X, Z, Edges, Visited, Y, member_in_ag(Y, Visited))
member_in_ag(H, .(H, L)) → member_out_ag(H, .(H, L))
member_in_ag(X, .(H, L)) → U5_ag(X, H, L, member_in_ag(X, L))
U5_ag(X, H, L, member_out_ag(X, L)) → member_out_ag(X, .(H, L))
U3_gggg(X, Z, Edges, Visited, Y, member_out_ag(Y, Visited)) → U4_gggg(X, Z, Edges, Visited, reach_in_aggg(Y, Z, Edges, .(Y, Visited)))
reach_in_aggg(X, Y, Edges, Visited) → U1_aggg(X, Y, Edges, Visited, member_in_gg(.(X, .(Y, [])), Edges))
U1_aggg(X, Y, Edges, Visited, member_out_gg(.(X, .(Y, [])), Edges)) → reach_out_aggg(X, Y, Edges, Visited)
reach_in_aggg(X, Z, Edges, Visited) → U2_aggg(X, Z, Edges, Visited, member1_in_gg(.(X, .(Y, [])), Edges))
U2_aggg(X, Z, Edges, Visited, member1_out_gg(.(X, .(Y, [])), Edges)) → U3_aggg(X, Z, Edges, Visited, Y, member_in_ag(Y, Visited))
U3_aggg(X, Z, Edges, Visited, Y, member_out_ag(Y, Visited)) → U4_aggg(X, Z, Edges, Visited, reach_in_aggg(Y, Z, Edges, .(Y, Visited)))
U4_aggg(X, Z, Edges, Visited, reach_out_aggg(Y, Z, Edges, .(Y, Visited))) → reach_out_aggg(X, Z, Edges, Visited)
U4_gggg(X, Z, Edges, Visited, reach_out_aggg(Y, Z, Edges, .(Y, Visited))) → reach_out_gggg(X, Z, Edges, Visited)
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
↳ PiDP
MEMBER1_IN_GG(X, .(H, L)) → MEMBER1_IN_GG(X, L)
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PiDP
↳ PiDP
MEMBER1_IN_GG(X, .(L)) → MEMBER1_IN_GG(X, L)
From the DPs we obtained the following set of size-change graphs:
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
MEMBER_IN_GG(X, .(H, L)) → MEMBER_IN_GG(X, L)
reach_in_gggg(X, Y, Edges, Visited) → U1_gggg(X, Y, Edges, Visited, member_in_gg(.(X, .(Y, [])), Edges))
member_in_gg(H, .(H, L)) → member_out_gg(H, .(H, L))
member_in_gg(X, .(H, L)) → U5_gg(X, H, L, member_in_gg(X, L))
U5_gg(X, H, L, member_out_gg(X, L)) → member_out_gg(X, .(H, L))
U1_gggg(X, Y, Edges, Visited, member_out_gg(.(X, .(Y, [])), Edges)) → reach_out_gggg(X, Y, Edges, Visited)
reach_in_gggg(X, Z, Edges, Visited) → U2_gggg(X, Z, Edges, Visited, member1_in_gg(.(X, .(Y, [])), Edges))
member1_in_gg(H, .(H, L)) → member1_out_gg(H, .(H, L))
member1_in_gg(X, .(H, L)) → U6_gg(X, H, L, member1_in_gg(X, L))
U6_gg(X, H, L, member1_out_gg(X, L)) → member1_out_gg(X, .(H, L))
U2_gggg(X, Z, Edges, Visited, member1_out_gg(.(X, .(Y, [])), Edges)) → U3_gggg(X, Z, Edges, Visited, Y, member_in_ag(Y, Visited))
member_in_ag(H, .(H, L)) → member_out_ag(H, .(H, L))
member_in_ag(X, .(H, L)) → U5_ag(X, H, L, member_in_ag(X, L))
U5_ag(X, H, L, member_out_ag(X, L)) → member_out_ag(X, .(H, L))
U3_gggg(X, Z, Edges, Visited, Y, member_out_ag(Y, Visited)) → U4_gggg(X, Z, Edges, Visited, reach_in_aggg(Y, Z, Edges, .(Y, Visited)))
reach_in_aggg(X, Y, Edges, Visited) → U1_aggg(X, Y, Edges, Visited, member_in_gg(.(X, .(Y, [])), Edges))
U1_aggg(X, Y, Edges, Visited, member_out_gg(.(X, .(Y, [])), Edges)) → reach_out_aggg(X, Y, Edges, Visited)
reach_in_aggg(X, Z, Edges, Visited) → U2_aggg(X, Z, Edges, Visited, member1_in_gg(.(X, .(Y, [])), Edges))
U2_aggg(X, Z, Edges, Visited, member1_out_gg(.(X, .(Y, [])), Edges)) → U3_aggg(X, Z, Edges, Visited, Y, member_in_ag(Y, Visited))
U3_aggg(X, Z, Edges, Visited, Y, member_out_ag(Y, Visited)) → U4_aggg(X, Z, Edges, Visited, reach_in_aggg(Y, Z, Edges, .(Y, Visited)))
U4_aggg(X, Z, Edges, Visited, reach_out_aggg(Y, Z, Edges, .(Y, Visited))) → reach_out_aggg(X, Z, Edges, Visited)
U4_gggg(X, Z, Edges, Visited, reach_out_aggg(Y, Z, Edges, .(Y, Visited))) → reach_out_gggg(X, Z, Edges, Visited)
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
MEMBER_IN_GG(X, .(H, L)) → MEMBER_IN_GG(X, L)
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PiDP
MEMBER_IN_GG(X, .(L)) → MEMBER_IN_GG(X, L)
From the DPs we obtained the following set of size-change graphs:
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
U3_AGGG(X, Z, Edges, Visited, Y, member_out_ag(Y, Visited)) → REACH_IN_AGGG(Y, Z, Edges, .(Y, Visited))
REACH_IN_AGGG(X, Z, Edges, Visited) → U2_AGGG(X, Z, Edges, Visited, member1_in_gg(.(X, .(Y, [])), Edges))
U2_AGGG(X, Z, Edges, Visited, member1_out_gg(.(X, .(Y, [])), Edges)) → U3_AGGG(X, Z, Edges, Visited, Y, member_in_ag(Y, Visited))
reach_in_gggg(X, Y, Edges, Visited) → U1_gggg(X, Y, Edges, Visited, member_in_gg(.(X, .(Y, [])), Edges))
member_in_gg(H, .(H, L)) → member_out_gg(H, .(H, L))
member_in_gg(X, .(H, L)) → U5_gg(X, H, L, member_in_gg(X, L))
U5_gg(X, H, L, member_out_gg(X, L)) → member_out_gg(X, .(H, L))
U1_gggg(X, Y, Edges, Visited, member_out_gg(.(X, .(Y, [])), Edges)) → reach_out_gggg(X, Y, Edges, Visited)
reach_in_gggg(X, Z, Edges, Visited) → U2_gggg(X, Z, Edges, Visited, member1_in_gg(.(X, .(Y, [])), Edges))
member1_in_gg(H, .(H, L)) → member1_out_gg(H, .(H, L))
member1_in_gg(X, .(H, L)) → U6_gg(X, H, L, member1_in_gg(X, L))
U6_gg(X, H, L, member1_out_gg(X, L)) → member1_out_gg(X, .(H, L))
U2_gggg(X, Z, Edges, Visited, member1_out_gg(.(X, .(Y, [])), Edges)) → U3_gggg(X, Z, Edges, Visited, Y, member_in_ag(Y, Visited))
member_in_ag(H, .(H, L)) → member_out_ag(H, .(H, L))
member_in_ag(X, .(H, L)) → U5_ag(X, H, L, member_in_ag(X, L))
U5_ag(X, H, L, member_out_ag(X, L)) → member_out_ag(X, .(H, L))
U3_gggg(X, Z, Edges, Visited, Y, member_out_ag(Y, Visited)) → U4_gggg(X, Z, Edges, Visited, reach_in_aggg(Y, Z, Edges, .(Y, Visited)))
reach_in_aggg(X, Y, Edges, Visited) → U1_aggg(X, Y, Edges, Visited, member_in_gg(.(X, .(Y, [])), Edges))
U1_aggg(X, Y, Edges, Visited, member_out_gg(.(X, .(Y, [])), Edges)) → reach_out_aggg(X, Y, Edges, Visited)
reach_in_aggg(X, Z, Edges, Visited) → U2_aggg(X, Z, Edges, Visited, member1_in_gg(.(X, .(Y, [])), Edges))
U2_aggg(X, Z, Edges, Visited, member1_out_gg(.(X, .(Y, [])), Edges)) → U3_aggg(X, Z, Edges, Visited, Y, member_in_ag(Y, Visited))
U3_aggg(X, Z, Edges, Visited, Y, member_out_ag(Y, Visited)) → U4_aggg(X, Z, Edges, Visited, reach_in_aggg(Y, Z, Edges, .(Y, Visited)))
U4_aggg(X, Z, Edges, Visited, reach_out_aggg(Y, Z, Edges, .(Y, Visited))) → reach_out_aggg(X, Z, Edges, Visited)
U4_gggg(X, Z, Edges, Visited, reach_out_aggg(Y, Z, Edges, .(Y, Visited))) → reach_out_gggg(X, Z, Edges, Visited)
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
U3_AGGG(X, Z, Edges, Visited, Y, member_out_ag(Y, Visited)) → REACH_IN_AGGG(Y, Z, Edges, .(Y, Visited))
REACH_IN_AGGG(X, Z, Edges, Visited) → U2_AGGG(X, Z, Edges, Visited, member1_in_gg(.(X, .(Y, [])), Edges))
U2_AGGG(X, Z, Edges, Visited, member1_out_gg(.(X, .(Y, [])), Edges)) → U3_AGGG(X, Z, Edges, Visited, Y, member_in_ag(Y, Visited))
member1_in_gg(H, .(H, L)) → member1_out_gg(H, .(H, L))
member1_in_gg(X, .(H, L)) → U6_gg(X, H, L, member1_in_gg(X, L))
member_in_ag(H, .(H, L)) → member_out_ag(H, .(H, L))
member_in_ag(X, .(H, L)) → U5_ag(X, H, L, member_in_ag(X, L))
U6_gg(X, H, L, member1_out_gg(X, L)) → member1_out_gg(X, .(H, L))
U5_ag(X, H, L, member_out_ag(X, L)) → member_out_ag(X, .(H, L))
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ Narrowing
REACH_IN_AGGG(Z, Edges, Visited) → U2_AGGG(Z, Edges, Visited, member1_in_gg(.(.([])), Edges))
U3_AGGG(Z, Edges, Visited, member_out_ag(Visited)) → REACH_IN_AGGG(Z, Edges, .(Visited))
U2_AGGG(Z, Edges, Visited, member1_out_gg(.(.([])), Edges)) → U3_AGGG(Z, Edges, Visited, member_in_ag(Visited))
member1_in_gg(H, .(L)) → member1_out_gg(H, .(L))
member1_in_gg(X, .(L)) → U6_gg(X, L, member1_in_gg(X, L))
member_in_ag(.(L)) → member_out_ag(.(L))
member_in_ag(.(L)) → U5_ag(L, member_in_ag(L))
U6_gg(X, L, member1_out_gg(X, L)) → member1_out_gg(X, .(L))
U5_ag(L, member_out_ag(L)) → member_out_ag(.(L))
member1_in_gg(x0, x1)
member_in_ag(x0)
U6_gg(x0, x1, x2)
U5_ag(x0, x1)
REACH_IN_AGGG(y0, .(x1), y2) → U2_AGGG(y0, .(x1), y2, member1_out_gg(.(.([])), .(x1)))
REACH_IN_AGGG(y0, .(x1), y2) → U2_AGGG(y0, .(x1), y2, U6_gg(.(.([])), x1, member1_in_gg(.(.([])), x1)))
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
REACH_IN_AGGG(y0, .(x1), y2) → U2_AGGG(y0, .(x1), y2, member1_out_gg(.(.([])), .(x1)))
U3_AGGG(Z, Edges, Visited, member_out_ag(Visited)) → REACH_IN_AGGG(Z, Edges, .(Visited))
U2_AGGG(Z, Edges, Visited, member1_out_gg(.(.([])), Edges)) → U3_AGGG(Z, Edges, Visited, member_in_ag(Visited))
REACH_IN_AGGG(y0, .(x1), y2) → U2_AGGG(y0, .(x1), y2, U6_gg(.(.([])), x1, member1_in_gg(.(.([])), x1)))
member1_in_gg(H, .(L)) → member1_out_gg(H, .(L))
member1_in_gg(X, .(L)) → U6_gg(X, L, member1_in_gg(X, L))
member_in_ag(.(L)) → member_out_ag(.(L))
member_in_ag(.(L)) → U5_ag(L, member_in_ag(L))
U6_gg(X, L, member1_out_gg(X, L)) → member1_out_gg(X, .(L))
U5_ag(L, member_out_ag(L)) → member_out_ag(.(L))
member1_in_gg(x0, x1)
member_in_ag(x0)
U6_gg(x0, x1, x2)
U5_ag(x0, x1)
U2_AGGG(y0, y1, .(x0), member1_out_gg(.(.([])), y1)) → U3_AGGG(y0, y1, .(x0), U5_ag(x0, member_in_ag(x0)))
U2_AGGG(y0, y1, .(x0), member1_out_gg(.(.([])), y1)) → U3_AGGG(y0, y1, .(x0), member_out_ag(.(x0)))
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Instantiation
REACH_IN_AGGG(y0, .(x1), y2) → U2_AGGG(y0, .(x1), y2, member1_out_gg(.(.([])), .(x1)))
U2_AGGG(y0, y1, .(x0), member1_out_gg(.(.([])), y1)) → U3_AGGG(y0, y1, .(x0), U5_ag(x0, member_in_ag(x0)))
U3_AGGG(Z, Edges, Visited, member_out_ag(Visited)) → REACH_IN_AGGG(Z, Edges, .(Visited))
U2_AGGG(y0, y1, .(x0), member1_out_gg(.(.([])), y1)) → U3_AGGG(y0, y1, .(x0), member_out_ag(.(x0)))
REACH_IN_AGGG(y0, .(x1), y2) → U2_AGGG(y0, .(x1), y2, U6_gg(.(.([])), x1, member1_in_gg(.(.([])), x1)))
member1_in_gg(H, .(L)) → member1_out_gg(H, .(L))
member1_in_gg(X, .(L)) → U6_gg(X, L, member1_in_gg(X, L))
member_in_ag(.(L)) → member_out_ag(.(L))
member_in_ag(.(L)) → U5_ag(L, member_in_ag(L))
U6_gg(X, L, member1_out_gg(X, L)) → member1_out_gg(X, .(L))
U5_ag(L, member_out_ag(L)) → member_out_ag(.(L))
member1_in_gg(x0, x1)
member_in_ag(x0)
U6_gg(x0, x1, x2)
U5_ag(x0, x1)
U3_AGGG(z0, z1, .(z2), member_out_ag(.(z2))) → REACH_IN_AGGG(z0, z1, .(.(z2)))
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
REACH_IN_AGGG(y0, .(x1), y2) → U2_AGGG(y0, .(x1), y2, member1_out_gg(.(.([])), .(x1)))
U2_AGGG(y0, y1, .(x0), member1_out_gg(.(.([])), y1)) → U3_AGGG(y0, y1, .(x0), U5_ag(x0, member_in_ag(x0)))
U3_AGGG(z0, z1, .(z2), member_out_ag(.(z2))) → REACH_IN_AGGG(z0, z1, .(.(z2)))
U2_AGGG(y0, y1, .(x0), member1_out_gg(.(.([])), y1)) → U3_AGGG(y0, y1, .(x0), member_out_ag(.(x0)))
REACH_IN_AGGG(y0, .(x1), y2) → U2_AGGG(y0, .(x1), y2, U6_gg(.(.([])), x1, member1_in_gg(.(.([])), x1)))
member1_in_gg(H, .(L)) → member1_out_gg(H, .(L))
member1_in_gg(X, .(L)) → U6_gg(X, L, member1_in_gg(X, L))
member_in_ag(.(L)) → member_out_ag(.(L))
member_in_ag(.(L)) → U5_ag(L, member_in_ag(L))
U6_gg(X, L, member1_out_gg(X, L)) → member1_out_gg(X, .(L))
U5_ag(L, member_out_ag(L)) → member_out_ag(.(L))
member1_in_gg(x0, x1)
member_in_ag(x0)
U6_gg(x0, x1, x2)
U5_ag(x0, x1)
REACH_IN_AGGG(z0, .(x1), .(.(z2))) → U2_AGGG(z0, .(x1), .(.(z2)), member1_out_gg(.(.([])), .(x1)))
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
U2_AGGG(y0, y1, .(x0), member1_out_gg(.(.([])), y1)) → U3_AGGG(y0, y1, .(x0), U5_ag(x0, member_in_ag(x0)))
U3_AGGG(z0, z1, .(z2), member_out_ag(.(z2))) → REACH_IN_AGGG(z0, z1, .(.(z2)))
REACH_IN_AGGG(z0, .(x1), .(.(z2))) → U2_AGGG(z0, .(x1), .(.(z2)), member1_out_gg(.(.([])), .(x1)))
U2_AGGG(y0, y1, .(x0), member1_out_gg(.(.([])), y1)) → U3_AGGG(y0, y1, .(x0), member_out_ag(.(x0)))
REACH_IN_AGGG(y0, .(x1), y2) → U2_AGGG(y0, .(x1), y2, U6_gg(.(.([])), x1, member1_in_gg(.(.([])), x1)))
member1_in_gg(H, .(L)) → member1_out_gg(H, .(L))
member1_in_gg(X, .(L)) → U6_gg(X, L, member1_in_gg(X, L))
member_in_ag(.(L)) → member_out_ag(.(L))
member_in_ag(.(L)) → U5_ag(L, member_in_ag(L))
U6_gg(X, L, member1_out_gg(X, L)) → member1_out_gg(X, .(L))
U5_ag(L, member_out_ag(L)) → member_out_ag(.(L))
member1_in_gg(x0, x1)
member_in_ag(x0)
U6_gg(x0, x1, x2)
U5_ag(x0, x1)
REACH_IN_AGGG(z0, .(x1), .(.(z2))) → U2_AGGG(z0, .(x1), .(.(z2)), U6_gg(.(.([])), x1, member1_in_gg(.(.([])), x1)))
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
U2_AGGG(y0, y1, .(x0), member1_out_gg(.(.([])), y1)) → U3_AGGG(y0, y1, .(x0), U5_ag(x0, member_in_ag(x0)))
REACH_IN_AGGG(z0, .(x1), .(.(z2))) → U2_AGGG(z0, .(x1), .(.(z2)), U6_gg(.(.([])), x1, member1_in_gg(.(.([])), x1)))
U3_AGGG(z0, z1, .(z2), member_out_ag(.(z2))) → REACH_IN_AGGG(z0, z1, .(.(z2)))
REACH_IN_AGGG(z0, .(x1), .(.(z2))) → U2_AGGG(z0, .(x1), .(.(z2)), member1_out_gg(.(.([])), .(x1)))
U2_AGGG(y0, y1, .(x0), member1_out_gg(.(.([])), y1)) → U3_AGGG(y0, y1, .(x0), member_out_ag(.(x0)))
member1_in_gg(H, .(L)) → member1_out_gg(H, .(L))
member1_in_gg(X, .(L)) → U6_gg(X, L, member1_in_gg(X, L))
member_in_ag(.(L)) → member_out_ag(.(L))
member_in_ag(.(L)) → U5_ag(L, member_in_ag(L))
U6_gg(X, L, member1_out_gg(X, L)) → member1_out_gg(X, .(L))
U5_ag(L, member_out_ag(L)) → member_out_ag(.(L))
member1_in_gg(x0, x1)
member_in_ag(x0)
U6_gg(x0, x1, x2)
U5_ag(x0, x1)
U2_AGGG(z0, .(z1), .(.(z2)), member1_out_gg(.(.([])), .(z1))) → U3_AGGG(z0, .(z1), .(.(z2)), U5_ag(.(z2), member_in_ag(.(z2))))
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
U2_AGGG(z0, .(z1), .(.(z2)), member1_out_gg(.(.([])), .(z1))) → U3_AGGG(z0, .(z1), .(.(z2)), U5_ag(.(z2), member_in_ag(.(z2))))
REACH_IN_AGGG(z0, .(x1), .(.(z2))) → U2_AGGG(z0, .(x1), .(.(z2)), U6_gg(.(.([])), x1, member1_in_gg(.(.([])), x1)))
U3_AGGG(z0, z1, .(z2), member_out_ag(.(z2))) → REACH_IN_AGGG(z0, z1, .(.(z2)))
REACH_IN_AGGG(z0, .(x1), .(.(z2))) → U2_AGGG(z0, .(x1), .(.(z2)), member1_out_gg(.(.([])), .(x1)))
U2_AGGG(y0, y1, .(x0), member1_out_gg(.(.([])), y1)) → U3_AGGG(y0, y1, .(x0), member_out_ag(.(x0)))
member1_in_gg(H, .(L)) → member1_out_gg(H, .(L))
member1_in_gg(X, .(L)) → U6_gg(X, L, member1_in_gg(X, L))
member_in_ag(.(L)) → member_out_ag(.(L))
member_in_ag(.(L)) → U5_ag(L, member_in_ag(L))
U6_gg(X, L, member1_out_gg(X, L)) → member1_out_gg(X, .(L))
U5_ag(L, member_out_ag(L)) → member_out_ag(.(L))
member1_in_gg(x0, x1)
member_in_ag(x0)
U6_gg(x0, x1, x2)
U5_ag(x0, x1)
U2_AGGG(z0, .(z1), .(.(z2)), member1_out_gg(.(.([])), .(z1))) → U3_AGGG(z0, .(z1), .(.(z2)), member_out_ag(.(.(z2))))
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
U2_AGGG(z0, .(z1), .(.(z2)), member1_out_gg(.(.([])), .(z1))) → U3_AGGG(z0, .(z1), .(.(z2)), U5_ag(.(z2), member_in_ag(.(z2))))
REACH_IN_AGGG(z0, .(x1), .(.(z2))) → U2_AGGG(z0, .(x1), .(.(z2)), U6_gg(.(.([])), x1, member1_in_gg(.(.([])), x1)))
U3_AGGG(z0, z1, .(z2), member_out_ag(.(z2))) → REACH_IN_AGGG(z0, z1, .(.(z2)))
REACH_IN_AGGG(z0, .(x1), .(.(z2))) → U2_AGGG(z0, .(x1), .(.(z2)), member1_out_gg(.(.([])), .(x1)))
U2_AGGG(z0, .(z1), .(.(z2)), member1_out_gg(.(.([])), .(z1))) → U3_AGGG(z0, .(z1), .(.(z2)), member_out_ag(.(.(z2))))
member1_in_gg(H, .(L)) → member1_out_gg(H, .(L))
member1_in_gg(X, .(L)) → U6_gg(X, L, member1_in_gg(X, L))
member_in_ag(.(L)) → member_out_ag(.(L))
member_in_ag(.(L)) → U5_ag(L, member_in_ag(L))
U6_gg(X, L, member1_out_gg(X, L)) → member1_out_gg(X, .(L))
U5_ag(L, member_out_ag(L)) → member_out_ag(.(L))
member1_in_gg(x0, x1)
member_in_ag(x0)
U6_gg(x0, x1, x2)
U5_ag(x0, x1)
U3_AGGG(z0, .(z1), .(.(z2)), member_out_ag(.(.(z2)))) → REACH_IN_AGGG(z0, .(z1), .(.(.(z2))))
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
U2_AGGG(z0, .(z1), .(.(z2)), member1_out_gg(.(.([])), .(z1))) → U3_AGGG(z0, .(z1), .(.(z2)), U5_ag(.(z2), member_in_ag(.(z2))))
REACH_IN_AGGG(z0, .(x1), .(.(z2))) → U2_AGGG(z0, .(x1), .(.(z2)), U6_gg(.(.([])), x1, member1_in_gg(.(.([])), x1)))
U3_AGGG(z0, .(z1), .(.(z2)), member_out_ag(.(.(z2)))) → REACH_IN_AGGG(z0, .(z1), .(.(.(z2))))
REACH_IN_AGGG(z0, .(x1), .(.(z2))) → U2_AGGG(z0, .(x1), .(.(z2)), member1_out_gg(.(.([])), .(x1)))
U2_AGGG(z0, .(z1), .(.(z2)), member1_out_gg(.(.([])), .(z1))) → U3_AGGG(z0, .(z1), .(.(z2)), member_out_ag(.(.(z2))))
member1_in_gg(H, .(L)) → member1_out_gg(H, .(L))
member1_in_gg(X, .(L)) → U6_gg(X, L, member1_in_gg(X, L))
member_in_ag(.(L)) → member_out_ag(.(L))
member_in_ag(.(L)) → U5_ag(L, member_in_ag(L))
U6_gg(X, L, member1_out_gg(X, L)) → member1_out_gg(X, .(L))
U5_ag(L, member_out_ag(L)) → member_out_ag(.(L))
member1_in_gg(x0, x1)
member_in_ag(x0)
U6_gg(x0, x1, x2)
U5_ag(x0, x1)
REACH_IN_AGGG(z0, .(z1), .(.(.(z2)))) → U2_AGGG(z0, .(z1), .(.(.(z2))), member1_out_gg(.(.([])), .(z1)))
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
U2_AGGG(z0, .(z1), .(.(z2)), member1_out_gg(.(.([])), .(z1))) → U3_AGGG(z0, .(z1), .(.(z2)), U5_ag(.(z2), member_in_ag(.(z2))))
REACH_IN_AGGG(z0, .(x1), .(.(z2))) → U2_AGGG(z0, .(x1), .(.(z2)), U6_gg(.(.([])), x1, member1_in_gg(.(.([])), x1)))
U3_AGGG(z0, .(z1), .(.(z2)), member_out_ag(.(.(z2)))) → REACH_IN_AGGG(z0, .(z1), .(.(.(z2))))
REACH_IN_AGGG(z0, .(z1), .(.(.(z2)))) → U2_AGGG(z0, .(z1), .(.(.(z2))), member1_out_gg(.(.([])), .(z1)))
U2_AGGG(z0, .(z1), .(.(z2)), member1_out_gg(.(.([])), .(z1))) → U3_AGGG(z0, .(z1), .(.(z2)), member_out_ag(.(.(z2))))
member1_in_gg(H, .(L)) → member1_out_gg(H, .(L))
member1_in_gg(X, .(L)) → U6_gg(X, L, member1_in_gg(X, L))
member_in_ag(.(L)) → member_out_ag(.(L))
member_in_ag(.(L)) → U5_ag(L, member_in_ag(L))
U6_gg(X, L, member1_out_gg(X, L)) → member1_out_gg(X, .(L))
U5_ag(L, member_out_ag(L)) → member_out_ag(.(L))
member1_in_gg(x0, x1)
member_in_ag(x0)
U6_gg(x0, x1, x2)
U5_ag(x0, x1)
REACH_IN_AGGG(z0, .(z1), .(.(.(z2)))) → U2_AGGG(z0, .(z1), .(.(.(z2))), U6_gg(.(.([])), z1, member1_in_gg(.(.([])), z1)))
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
U2_AGGG(z0, .(z1), .(.(z2)), member1_out_gg(.(.([])), .(z1))) → U3_AGGG(z0, .(z1), .(.(z2)), U5_ag(.(z2), member_in_ag(.(z2))))
U3_AGGG(z0, .(z1), .(.(z2)), member_out_ag(.(.(z2)))) → REACH_IN_AGGG(z0, .(z1), .(.(.(z2))))
REACH_IN_AGGG(z0, .(z1), .(.(.(z2)))) → U2_AGGG(z0, .(z1), .(.(.(z2))), member1_out_gg(.(.([])), .(z1)))
U2_AGGG(z0, .(z1), .(.(z2)), member1_out_gg(.(.([])), .(z1))) → U3_AGGG(z0, .(z1), .(.(z2)), member_out_ag(.(.(z2))))
REACH_IN_AGGG(z0, .(z1), .(.(.(z2)))) → U2_AGGG(z0, .(z1), .(.(.(z2))), U6_gg(.(.([])), z1, member1_in_gg(.(.([])), z1)))
member1_in_gg(H, .(L)) → member1_out_gg(H, .(L))
member1_in_gg(X, .(L)) → U6_gg(X, L, member1_in_gg(X, L))
member_in_ag(.(L)) → member_out_ag(.(L))
member_in_ag(.(L)) → U5_ag(L, member_in_ag(L))
U6_gg(X, L, member1_out_gg(X, L)) → member1_out_gg(X, .(L))
U5_ag(L, member_out_ag(L)) → member_out_ag(.(L))
member1_in_gg(x0, x1)
member_in_ag(x0)
U6_gg(x0, x1, x2)
U5_ag(x0, x1)
U2_AGGG(z0, .(z1), .(.(.(z2))), member1_out_gg(.(.([])), .(z1))) → U3_AGGG(z0, .(z1), .(.(.(z2))), U5_ag(.(.(z2)), member_in_ag(.(.(z2)))))
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
U3_AGGG(z0, .(z1), .(.(z2)), member_out_ag(.(.(z2)))) → REACH_IN_AGGG(z0, .(z1), .(.(.(z2))))
U2_AGGG(z0, .(z1), .(.(.(z2))), member1_out_gg(.(.([])), .(z1))) → U3_AGGG(z0, .(z1), .(.(.(z2))), U5_ag(.(.(z2)), member_in_ag(.(.(z2)))))
REACH_IN_AGGG(z0, .(z1), .(.(.(z2)))) → U2_AGGG(z0, .(z1), .(.(.(z2))), member1_out_gg(.(.([])), .(z1)))
U2_AGGG(z0, .(z1), .(.(z2)), member1_out_gg(.(.([])), .(z1))) → U3_AGGG(z0, .(z1), .(.(z2)), member_out_ag(.(.(z2))))
REACH_IN_AGGG(z0, .(z1), .(.(.(z2)))) → U2_AGGG(z0, .(z1), .(.(.(z2))), U6_gg(.(.([])), z1, member1_in_gg(.(.([])), z1)))
member1_in_gg(H, .(L)) → member1_out_gg(H, .(L))
member1_in_gg(X, .(L)) → U6_gg(X, L, member1_in_gg(X, L))
member_in_ag(.(L)) → member_out_ag(.(L))
member_in_ag(.(L)) → U5_ag(L, member_in_ag(L))
U6_gg(X, L, member1_out_gg(X, L)) → member1_out_gg(X, .(L))
U5_ag(L, member_out_ag(L)) → member_out_ag(.(L))
member1_in_gg(x0, x1)
member_in_ag(x0)
U6_gg(x0, x1, x2)
U5_ag(x0, x1)
U2_AGGG(z0, .(z1), .(.(.(z2))), member1_out_gg(.(.([])), .(z1))) → U3_AGGG(z0, .(z1), .(.(.(z2))), member_out_ag(.(.(.(z2)))))
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
U3_AGGG(z0, .(z1), .(.(z2)), member_out_ag(.(.(z2)))) → REACH_IN_AGGG(z0, .(z1), .(.(.(z2))))
U2_AGGG(z0, .(z1), .(.(.(z2))), member1_out_gg(.(.([])), .(z1))) → U3_AGGG(z0, .(z1), .(.(.(z2))), member_out_ag(.(.(.(z2)))))
REACH_IN_AGGG(z0, .(z1), .(.(.(z2)))) → U2_AGGG(z0, .(z1), .(.(.(z2))), member1_out_gg(.(.([])), .(z1)))
U2_AGGG(z0, .(z1), .(.(.(z2))), member1_out_gg(.(.([])), .(z1))) → U3_AGGG(z0, .(z1), .(.(.(z2))), U5_ag(.(.(z2)), member_in_ag(.(.(z2)))))
REACH_IN_AGGG(z0, .(z1), .(.(.(z2)))) → U2_AGGG(z0, .(z1), .(.(.(z2))), U6_gg(.(.([])), z1, member1_in_gg(.(.([])), z1)))
member1_in_gg(H, .(L)) → member1_out_gg(H, .(L))
member1_in_gg(X, .(L)) → U6_gg(X, L, member1_in_gg(X, L))
member_in_ag(.(L)) → member_out_ag(.(L))
member_in_ag(.(L)) → U5_ag(L, member_in_ag(L))
U6_gg(X, L, member1_out_gg(X, L)) → member1_out_gg(X, .(L))
U5_ag(L, member_out_ag(L)) → member_out_ag(.(L))
member1_in_gg(x0, x1)
member_in_ag(x0)
U6_gg(x0, x1, x2)
U5_ag(x0, x1)